Karl PearsonKarl Pearson (–), mathématicien britannique, est un des fondateurs de la statistique moderne appliquée à la biomédecine (biométrie et biostatistique). Il est principalement connu pour avoir développé le coefficient de corrélation et le test du χ2. Il est aussi l'un des fondateurs de la revue Biometrika, dont il a été rédacteur en chef pendant 36 ans et qu'il a hissée au rang des meilleures revues de statistique mathématique. Né le de Fanny Smith et William Pearson, tous deux issus de familles quakers du Yorkshire, Karl Pearson a deux frères et une sœur.
Test du χ²En statistique, le test du khi carré, aussi dit du khi-deux, d’après sa désignation symbolique , est un test statistique où la statistique de test suit une loi du sous l'hypothèse nulle. Par exemple, il permet de tester l'adéquation d'une série de données à une famille de lois de probabilité ou de tester l'indépendance entre deux variables aléatoires. Ce test a été proposé par le statisticien Karl Pearson en 1900.
Valeur pvignette|redresse=1.5|Illustration de la valeur-p. X désigne la loi de probabilité de la statistique de test et z la valeur calculée de la statistique de test. Dans un test statistique, la valeur-p (en anglais p-value pour probability value), parfois aussi appelée p-valeur, est la probabilité pour un modèle statistique donné sous l'hypothèse nulle d'obtenir une valeur au moins aussi extrême que celle observée. L'usage de la valeur-p est courant dans de nombreux domaines de recherche comme la physique, la psychologie, l'économie et les sciences de la vie.
One- and two-tailed testsIn statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic. A two-tailed test is appropriate if the estimated value is greater or less than a certain range of values, for example, whether a test taker may score above or below a specific range of scores. This method is used for null hypothesis testing and if the estimated value exists in the critical areas, the alternative hypothesis is accepted over the null hypothesis.
Test exact de FisherEn statistique, le test exact de Fisher est un test statistique exact utilisé pour l'analyse des tables de contingence. Ce test est utilisé en général avec de faibles effectifs mais il est valide pour toutes les tailles d'échantillons. Il doit son nom à son inventeur, Ronald Fisher. C'est un test qualifié d'exact car les probabilités peuvent être calculées exactement plutôt qu'en s'appuyant sur une approximation qui ne devient correcte qu'asymptotiquement comme pour le test du utilisé dans les tables de contingence.
G-testIn statistics, G-tests are likelihood-ratio or maximum likelihood statistical significance tests that are increasingly being used in situations where chi-squared tests were previously recommended. The general formula for G is where is the observed count in a cell, is the expected count under the null hypothesis, denotes the natural logarithm, and the sum is taken over all non-empty cells. Furthermore, the total observed count should be equal to the total expected count:where is the total number of observations.
Test du rapport de vraisemblanceEn statistiques, le test du rapport de vraisemblance est un test statistique qui permet de tester un modèle paramétrique contraint contre un non contraint. Si on appelle le vecteur des paramètres estimés par la méthode du maximum de vraisemblance, on considère un test du type : contre On définit alors l'estimateur du maximum de vraisemblance et l'estimateur du maximum de vraisemblance sous .
Tableau de contingenceUn tableau de contingence est une méthode de représentation de données issues d’un comptage permettant d'estimer la dépendance entre deux caractères. Elle consiste à croiser deux caractères d'une population (par exemple une classe d'âge et un score) en dénombrant l'effectif correspondant à la conjonction « caractère 1 » et « caractère 2 ». Les effectifs partiels sont rassemblés dans un tableau à double entrée, par ligne pour le premier caractère, et par colonne en fonction du second caractère : c'est le « tableau de contingence ».
Loi du χ²En statistiques et en théorie des probabilités, la loi du centrée (prononcé « khi carré » ou « khi-deux ») avec k degrés de liberté est la loi de la somme de carrés de k lois normales centrées réduites indépendantes. La loi du est utilisée en inférence statistique et pour les tests statistiques notamment le test du χ2. La loi du χ2 non centrée généralise la loi du . Soient k variables aléatoires X, ... , X indépendantes suivant la loi normale centrée et réduite, c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1.
Qualité de l'ajustementThe goodness of fit of a statistical model describes how well it fits a set of observations. Measures of goodness of fit typically summarize the discrepancy between observed values and the values expected under the model in question. Such measures can be used in statistical hypothesis testing, e.g. to test for normality of residuals, to test whether two samples are drawn from identical distributions (see Kolmogorov–Smirnov test), or whether outcome frequencies follow a specified distribution (see Pearson's chi-square test).