In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive (i.e., there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent.
Uniform polyhedra may be regular (if also face- and edge-transitive), quasi-regular (if also edge-transitive but not face-transitive), or semi-regular (if neither edge- nor face-transitive). The faces and vertices need not be convex, so many of the uniform polyhedra are also star polyhedra.
There are two infinite classes of uniform polyhedra, together with 75 other polyhedra:
Infinite classes:
prisms,
antiprisms.
Convex exceptional:
5 Platonic solids: regular convex polyhedra,
13 Archimedean solids: 2 quasiregular and 11 semiregular convex polyhedra.
Star (nonconvex) exceptional:
4 Kepler–Poinsot polyhedra: regular nonconvex polyhedra,
53 uniform star polyhedra: 14 quasiregular and 39 semiregular.
Hence 5 + 13 + 4 + 53 = 75.
There are also many degenerate uniform polyhedra with pairs of edges that coincide, including one found by John Skilling called the great disnub dirhombidodecahedron (Skilling's figure).
Dual polyhedra to uniform polyhedra are face-transitive (isohedral) and have regular vertex figures, and are generally classified in parallel with their dual (uniform) polyhedron. The dual of a regular polyhedron is regular, while the dual of an Archimedean solid is a Catalan solid.
The concept of uniform polyhedron is a special case of the concept of uniform polytope, which also applies to shapes in higher-dimensional (or lower-dimensional) space.
thumb
define uniform polyhedra to be vertex-transitive polyhedra with regular faces. They define a polyhedron to be a finite set of polygons such that each side of a polygon is a side of just one other polygon, such that no non-empty proper subset of the polygons has the same property. By a polygon they implicitly mean a polygon in 3-dimensional Euclidean space; these are allowed to be non-convex and to intersect each other.
There are some generalizations of the concept of a uniform polyhedron.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
In mathematics, an abstract polytope is an algebraic partially ordered set which captures the dyadic property of a traditional polytope without specifying purely geometric properties such as points and lines. A geometric polytope is said to be a realization of an abstract polytope in some real N-dimensional space, typically Euclidean. This abstract definition allows more general combinatorial structures than traditional definitions of a polytope, thus allowing new objects that have no counterpart in traditional theory.
In geometry, the term semiregular polyhedron (or semiregular polytope) is used variously by different authors. In its original definition, it is a polyhedron with regular polygonal faces, and a symmetry group which is transitive on its vertices; today, this is more commonly referred to as a uniform polyhedron (this follows from Thorold Gosset's 1900 definition of the more general semiregular polytope). These polyhedra include: The thirteen Archimedean solids.
In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies (not mirror images) of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An. Antiprisms are a subclass of prismatoids, and are a (degenerate) type of snub polyhedron. Antiprisms are similar to prisms, except that the bases are twisted relatively to each other, and that the side faces (connecting the bases) are 2n triangles, rather than n quadrilaterals.
Let k be a field of positive characteristic. Building on the work of the second named author, we define a new class of k-algebras, called diagonally F-regular algebras, for which the so-called Uniform. Symbolic Topology Property (USTP) holds effectively. W ...
2020
Many scientific inquiries in natural sciences involve approximating a spherical field -namely a scalar quantity defined over a continuum of directions- from generalised samples of the latter (e.g. directional samples, local averages, etc). Such an approxim ...
EPFL2020
, , ,
Given a source of iid samples of edges of an input graph G with n vertices and m edges, how many samples does one need to compute a constant factor approximation to the maximum matching size in G? Moreover, is it possible to obtain such an estimate in a sm ...