In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed.
Every tangent space of a pseudo-Riemannian manifold is a pseudo-Euclidean vector space.
A special case used in general relativity is a four-dimensional Lorentzian manifold for modeling spacetime, where tangent vectors can be classified as timelike, null, and spacelike.
Manifold and Differentiable manifold
In differential geometry, a differentiable manifold is a space which is locally similar to a Euclidean space. In an n-dimensional Euclidean space any point can be specified by n real numbers. These are called the coordinates of the point.
An n-dimensional differentiable manifold is a generalisation of n-dimensional Euclidean space. In a manifold it may only be possible to define coordinates locally. This is achieved by defining coordinate patches: subsets of the manifold which can be mapped into n-dimensional Euclidean space.
See Manifold, Differentiable manifold, Coordinate patch for more details.
Tangent space and Metric tensor
Associated with each point in an -dimensional differentiable manifold is a tangent space (denoted ). This is an -dimensional vector space whose elements can be thought of as equivalence classes of curves passing through the point .
A metric tensor is a non-degenerate, smooth, symmetric, bilinear map that assigns a real number to pairs of tangent vectors at each tangent space of the manifold. Denoting the metric tensor by we can express this as
The map is symmetric and bilinear so if are tangent vectors at a point to the manifold then we have
for any real number .
That is non-degenerate means there is no non-zero such that for all .
Metric signature
Given a metric tensor g on an n-dimensional real manifold, the quadratic form q(x) = g(x, x) associated with the metric tensor applied to each vector of any orthogonal basis produces n real values.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart.
In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold (i.e., it is a tensor field). It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
In algorithms for solving optimization problems constrained to a smooth manifold, retractions are a well-established tool to ensure that the iterates stay on the manifold. More recently, it has been demonstrated that retractions are a useful concept for ot ...
This course will serve as a basic introduction to the mathematical theory of general relativity. We will cover topics including the formalism of Lorentzian geometry, the formulation of the initial val
This course will serve as a first introduction to the geometry of Riemannian manifolds, which form an indispensible tool in the modern fields of differential geometry, analysis and theoretical physics
The goal of this course is to introduce the student to the basic notion of analysis on metric (measure) spaces, quasiconformal mappings, potential theory on metric spaces, etc. The subjects covered wi
E. E. Floyd showed in 1973 that there exist only two nontrivial cobor-dism classes that contain manifolds with three cells, and that they lie in dimen-sions 10 and 5. We prove that there is an action of the cyclic group C2 on the 10-dimensional Floyd manif ...
We propose a structured prediction approach for robot imitation learning from demonstrations. Among various tools for robot imitation learning, supervised learning has been observed to have a prominent role. Structured prediction is a form of supervised le ...