Summary
In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices (or endomorphisms of a vector space) in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators. The notion is closely related to that of a representation of a Lie group. Roughly speaking, the representations of Lie algebras are the differentiated form of representations of Lie groups, while the representations of the universal cover of a Lie group are the integrated form of the representations of its Lie algebra. In the study of representations of a Lie algebra, a particular ring, called the universal enveloping algebra, associated with the Lie algebra plays an important role. The universality of this ring says that the of representations of a Lie algebra is the same as the category of modules over its enveloping algebra. Let be a Lie algebra and let be a vector space. We let denote the space of endomorphisms of , that is, the space of all linear maps of to itself. We make into a Lie algebra with bracket given by the commutator: for all ρ,σ in . Then a representation of on is a Lie algebra homomorphism Explicitly, this means that should be a linear map and it should satisfy for all X, Y in . The vector space V, together with the representation ρ, is called a -module. (Many authors abuse terminology and refer to V itself as the representation). The representation is said to be faithful if it is injective. One can equivalently define a -module as a vector space V together with a bilinear map such that for all X,Y in and v in V. This is related to the previous definition by setting X ⋅ v = ρ(X)(v). Adjoint representation of a Lie algebra The most basic example of a Lie algebra representation is the adjoint representation of a Lie algebra on itself: Indeed, by virtue of the Jacobi identity, is a Lie algebra homomorphism.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (32)
PHYS-431: Quantum field theory I
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
MATH-334: Representation theory
Study the basics of representation theory of groups and associative algebras.
MATH-492: Representation theory of semisimple lie algebras
We will establish the major results in the representation theory of semisimple Lie algebras over the field of complex numbers, and that of the related algebraic groups.
Show more
Related publications (231)