In arithmetic, a quotient (from quotiens 'how many times', pronounced ˈkwoʊʃənt) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in the case of Euclidean division), or as a fraction or a ratio (in the case of a general division). For example, when dividing 20 (the dividend) by 3 (the divisor), the quotient is 6 (with a remainder of 2) in the first sense, and (a repeating decimal) in the second sense.
Ratios can be defined as dimensionless quotients;
non-dimensionless quotients are also known as rates.
Division (mathematics)#Notation
The quotient is most frequently encountered as two numbers, or two variables, divided by a horizontal line. The words "dividend" and "divisor" refer to each individual part, while the word "quotient" refers to the whole.
The quotient is also less commonly defined as the greatest whole number of times a divisor may be subtracted from a dividend—before making the remainder negative. For example, the divisor 3 may be subtracted up to 6 times from the dividend 20, before the remainder becomes negative:
20 − 3 − 3 − 3 − 3 − 3 − 3 ≥ 0,
while
20 − 3 − 3 − 3 − 3 − 3 − 3 − 3 < 0.
In this sense, a quotient is the integer part of the ratio of two numbers.
Rational number
A rational number can be defined as the quotient of two integers (as long as the denominator is non-zero).
A more detailed definition goes as follows:
A real number r is rational, if and only if it can be expressed as a quotient of two integers with a nonzero denominator. A real number that is not rational is irrational.
Or more formally:
Given a real number r, r is rational if and only if there exists integers a and b such that and .
The existence of irrational numbers—numbers that are not a quotient of two integers—was first discovered in geometry, in such things as the ratio of the diagonal to the side in a square.
Outside of arithmetic, many branches of mathematics have borrowed the word "quotient" to describe structures built by breaking larger structures into pieces.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
On étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
A fraction (from fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A common, vulgar, or simple fraction (examples: and ) consists of an integer numerator, displayed above a line (or before a slash like ), and a non-zero integer denominator, displayed below (or after) that line.
In mathematics, a rational number is a number that can be expressed as the quotient or fraction \tfrac p q of two integers, a numerator p and a non-zero denominator q. For example, \tfrac{-3}{7} is a rational number, as is every integer (e.g., 5 = 5/1). The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface Q, or blackboard bold \Q. A rational number is a real number.
In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder exist and are unique, under some conditions. Because of this uniqueness, Euclidean division is often considered without referring to any method of computation, and without explicitly computing the quotient and the remainder.
We prove polarization theorems for arbitrary classical-quantum (cq) channels. The input alphabet is endowed with an arbitrary Abelian group operation, and an Anion-style transformation is applied using this operation. It is shown that as the number of pola ...
2018
,
We examine how, in prime characteristic p, the group of endotrivial modules of a finite group G and the group of endotrivial modules of a quotient of G modulo a normal subgroup of order prime to p are related. There is always an inflation map, but examples ...
2017
Information theory is the field in which we study the fundamental limitations of communication. Shannon proved in 1948 that there exists a maximum rate, called capacity, at which we can reliably communicate information through a given channel. However, Sha ...