The junction-gate field-effect transistor (JFET) is one of the simplest types of field-effect transistor. JFETs are three-terminal semiconductor devices that can be used as electronically controlled switches or resistors, or to build amplifiers. Unlike bipolar junction transistors, JFETs are exclusively voltage-controlled in that they do not need a biasing current. Electric charge flows through a semiconducting channel between source and drain terminals. By applying a reverse bias voltage to a gate terminal, the channel is pinched, so that the electric current is impeded or switched off completely. A JFET is usually conducting when there is zero voltage between its gate and source terminals. If a potential difference of the proper polarity is applied between its gate and source terminals, the JFET will be more resistive to current flow, which means less current would flow in the channel between the source and drain terminals. JFETs are sometimes referred to as depletion-mode devices, as they rely on the principle of a depletion region, which is devoid of majority charge carriers. The depletion region has to be closed to enable current to flow. JFETs can have an n-type or p-type channel. In the n-type, if the voltage applied to the gate is negative with respect to the source, the current will be reduced (similarly in the p-type, if the voltage applied to the gate is positive with respect to the source). Because a JFET in a common source or common drain configuration has a large input impedance (sometimes on the order of 1010 ohms), little current is drawn from circuits used as input to the gate. A succession of FET-like devices was patented by Julius Lilienfeld in the 1920s and 1930s. However, materials science and fabrication technology would require decades of advances before FETs could actually be manufactured. JFET was first patented by Heinrich Welker in 1945. During the 1940s, researchers John Bardeen, Walter Houser Brattain, and William Shockley were trying to build a FET, but failed in their repeated attempts.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (28)
EE-320: Analog IC design
Introduction to the design of analog CMOS integrated circuits at the transistor level. Understanding and design of basic structures.
MICRO-312: Physics of semiconductors devices
Les étudiants savent expliquer la physique des composants semiconducteurs, tels que diodes, transistors et composants MOS. Ils les utilisent dans des circuits électroniques fondamentaux tels qu'invers
NX-422: Neural interfaces
Neural interfaces (NI) are bioelectronic systems that interface the nervous system to digital technologies. This course presents their main building blocks (transducers, instrumentation & communicatio
Show more
Related lectures (65)
Convergence Analysis: Explicit RK Scheme
Explores the convergence analysis of the Explicit Runge-Kutta scheme for accurate numerical solutions.
Simulation of Quantum Devices
Covers the simulation of 2D and 1D Field-Effect Transistors using the Non-Equilibrium Green's Function method.
MOS in Saturation
Explores MOS transistors in saturation, covering I/V characteristics, pinch-off behavior, and transconductance.
Show more
Related publications (229)
Related concepts (18)
Field-effect transistor
The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: source, gate, and drain. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the conductivity between the drain and source. FETs are also known as unipolar transistors since they involve single-carrier-type operation.
Operational amplifier
An operational amplifier (often op amp or opamp) is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output. In this configuration, an op amp produces an output potential (relative to circuit ground) that is typically 100,000 times larger than the potential difference between its input terminals. The operational amplifier traces its origin and name to analog computers, where they were used to perform mathematical operations in linear, non-linear, and frequency-dependent circuits.
CMOS
Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss", siːmɑːs, -ɒs) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuit (IC) chips, including microprocessors, microcontrollers, memory chips (including CMOS BIOS), and other digital logic circuits.
Show more
Related MOOCs (2)
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.