The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point arithmetic established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and portably. Many hardware floating-point units use the IEEE 754 standard.
The standard defines:
arithmetic formats: sets of binary and decimal floating-point data, which consist of finite numbers (including signed zeros and subnormal numbers), infinities, and special "not a number" values (NaNs)
interchange formats: encodings (bit strings) that may be used to exchange floating-point data in an efficient and compact form
rounding rules: properties to be satisfied when rounding numbers during arithmetic and conversions
operations: arithmetic and other operations (such as trigonometric functions) on arithmetic formats
exception handling: indications of exceptional conditions (such as division by zero, overflow, etc.)
IEEE 754-2008, published in August 2008, includes nearly all of the original IEEE 754-1985 standard, plus the IEEE 854-1987 Standard for Radix-Independent Floating-Point Arithmetic. The current version, IEEE 754-2019, was published in July 2019. It is a minor revision of the previous version, incorporating mainly clarifications, defect fixes and new recommended operations.
The first standard for floating-point arithmetic, IEEE 754-1985, was published in 1985. It covered only binary floating-point arithmetic.
A new version, IEEE 754-2008, was published in August 2008, following a seven-year revision process, chaired by Dan Zuras and edited by Mike Cowlishaw. It replaced both IEEE 754-1985 (binary floating-point arithmetic) and IEEE 854-1987 Standard for Radix-Independent Floating-Point Arithmetic. The binary formats in the original standard are included in this new standard along with three new basic formats, one binary and two decimal.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Visual computing and machine learning are characterized by their reliance on numerical algorithms to process large amounts of information such as images, shapes, and 3D volumes. This course will famil
Study of the essential components and implementation technologies of digital signal processing and communication systems from the theoretical, algorithmic and system implementation point of view.
In computing, quadruple precision (or quad precision) is a binary floating point–based computer number format that occupies 16 bytes (128 bits) with precision at least twice the 53-bit double precision. This 128-bit quadruple precision is designed not only for applications requiring results in higher than double precision, but also, as a primary function, to allow the computation of double precision results more reliably and accurately by minimising overflow and round-off errors in intermediate calculations and scratch variables.
Single-precision floating-point format (sometimes called FP32 or float32) is a computer number format, usually occupying 32 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point. A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 231 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2−23) × 2127 ≈ 3.
The Intel 8087, announced in 1980, was the first floating-point coprocessor for the 8086 line of microprocessors. The purpose of the chip was to speed up floating-point arithmetic operations, such as addition, subtraction, multiplication, division, and square root. It also computes transcendental functions such as exponential, logarithmic or trigonometric calculations. The performance enhancements were from approximately 20% to over 500%, depending on the specific application. The 8087 could perform about 50,000 FLOPS using around 2.
Smart contracts have emerged as the most promising foundations for applications of the blockchain technology. Even though smart contracts are expected to serve as the backbone of the next-generation web, they have several limitations that hinder their wide ...
EPFL2024
, , , ,
Compute memories are memory arrays augmented with dedicated logic to support arithmetic. They support the efficient execution of data-centric computing patterns, such as those characterizing Artificial Intelligence (AI) algorithms. These architectures can ...
2023
, , ,
State-of-the-art Artificial Intelligence (AI) algorithms, such as graph neural networks and recommendation systems, require floating-point computation of very large matrix multiplications over sparse data. Their execution in resource-constrained scenarios, ...