Soft tissue is all the tissue in the body that is not hardened by the processes of ossification or calcification such as bones and teeth. Soft tissue connects, surrounds or supports internal organs and bones, and includes muscle, tendons, ligaments, fat, fibrous tissue, lymph and blood vessels, fasciae, and synovial membranes. It is sometimes defined by what it is not – such as "nonepithelial, extraskeletal mesenchyme exclusive of the reticuloendothelial system and glia". The characteristic substances inside the extracellular matrix of soft tissue are the collagen, elastin and ground substance. Normally the soft tissue is very hydrated because of the ground substance. The fibroblasts are the most common cell responsible for the production of soft tissues' fibers and ground substance. Variations of fibroblasts, like chondroblasts, may also produce these substances. At small strains, elastin confers stiffness to the tissue and stores most of the strain energy. The collagen fibers are comparatively inextensible and are usually loose (wavy, crimped). With increasing tissue deformation the collagen is gradually stretched in the direction of deformation. When taut, these fibers produce a strong growth in tissue stiffness. The composite behavior is analogous to a nylon stocking, whose rubber band does the role of elastin as the nylon does the role of collagen. In soft tissues, the collagen limits the deformation and protects the tissues from injury. Human soft tissue is highly deformable, and its mechanical properties vary significantly from one person to another. Impact testing results showed that the stiffness and the damping resistance of a test subject’s tissue are correlated with the mass, velocity, and size of the striking object. Such properties may be useful for forensics investigation when contusions were induced. When a solid object impacts a human soft tissue, the energy of the impact will be absorbed by the tissues to reduce the effect of the impact or the pain level; subjects with more soft tissue thickness tended to absorb the impacts with less aversion.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
ME-482: Biomechanics of the musculoskeletal system
The basis for a mechanical description of the musculoskeletal system are presented. This description is based on the concepts of solid mechanics, physiology and anatomy of the musculoskeletal system.
ME-380: Experimental methods in biomechanics
Le but de ce cours est de permettre aux étudiants de se familiariser avec des techniques de base de mesures des propriétés mécaniques de différents tissus musculo squelettiques ou biomatériaux utilisé
MICRO-618: Soft Microsystems Processing and Devices
Amongst others, following topics will be covered during the course:
  • Soft Microsystems and Electronics
  • Electroactive polymers
  • Printed electronics and microsystems
  • Inkjet printing of polymers
Show more
Related lectures (13)
Biomechanical Tissues: Non-linear Constitutive Laws
Explores ligamentoplasty outcomes, biomechanical analysis, finite element analysis, and tissue characterization through constitutive laws.
Biomechanical Tissues: Non-linear Constitutive Laws
Explores biomechanics at the tissue level, focusing on constitutive laws, stress-strain curves, and treatment options for ACL rupture.
Hydrogels as Biomaterials
Explores the definition, key properties, synthesis schemes, and applications of hydrogels as biomaterials, emphasizing their importance in drug delivery, tissue engineering, and cell biology.
Show more
Related publications (105)
Related concepts (7)
Biomaterial
A biomaterial is a substance that has been engineered to interact with biological systems for a medical purpose, either a therapeutic (treat, augment, repair, or replace a tissue function of the body) or a diagnostic one. As a science, biomaterials is about fifty years old. The study of biomaterials is called biomaterials science or biomaterials engineering. It has experienced steady and strong growth over its history, with many companies investing large amounts of money into the development of new products.
Biomechanics
Biomechanics is the study of the structure, function and motion of the mechanical aspects of biological systems, at any level from whole organisms to organs, cells and cell organelles, using the methods of mechanics. Biomechanics is a branch of biophysics. In 2022, computational mechanics goes far beyond pure mechanics, and involves other physical actions: chemistry, heat and mass transfer, electric and magnetic stimuli and many others.
Fibrosis
Fibrosis, also known as fibrotic scarring, is a pathological wound healing in which connective tissue replaces normal parenchymal tissue to the extent that it goes unchecked, leading to considerable tissue remodelling and the formation of permanent scar tissue. Repeated injuries, chronic inflammation and repair are susceptible to fibrosis, where an accidental excessive accumulation of extracellular matrix components, such as the collagen, is produced by fibroblasts, leading to the formation of a permanent fibrotic scar.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.