Sheaf cohomologyIn mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper. Sheaves, sheaf cohomology, and spectral sequences were introduced by Jean Leray at the prisoner-of-war camp Oflag XVII-A in Austria.
Chern classIn mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, Gromov-Witten invariants. Chern classes were introduced by . Chern classes are characteristic classes. They are topological invariants associated with vector bundles on a smooth manifold.
Henri CartanHenri Paul Cartan (kaʁtɑ̃; 8 July 1904 – 13 August 2008) was a French mathematician who made substantial contributions to algebraic topology. He was the son of the mathematician Élie Cartan, nephew of mathematician Anna Cartan, oldest brother of composer fr, physicist fr and mathematician fr, and the son-in-law of physicist Pierre Weiss. According to his own words, Henri Cartan was interested in mathematics at a very young age, without being influenced by his family.
GrassmannianIn mathematics, the Grassmannian Gr(k, V) is a space that parameterizes all k-dimensional linear subspaces of the n-dimensional vector space V. For example, the Grassmannian Gr(1, V) is the space of lines through the origin in V, so it is the same as the projective space of one dimension lower than V. When V is a real or complex vector space, Grassmannians are compact smooth manifolds.
Hodge theoryIn mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic. The theory was developed by Hodge in the 1930s to study algebraic geometry, and it built on the work of Georges de Rham on de Rham cohomology.
Invertible sheafIn mathematics, an invertible sheaf is a sheaf on a ringed space which has an inverse with respect to tensor product of sheaves of modules. It is the equivalent in algebraic geometry of the topological notion of a line bundle. Due to their interactions with Cartier divisors, they play a central role in the study of algebraic varieties. Let (X, OX) be a ringed space. Isomorphism classes of sheaves of OX-modules form a monoid under the operation of tensor product of OX-modules. The identity element for this operation is OX itself.
Scheme (mathematics)In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne).
Serre dualityIn algebraic geometry, a branch of mathematics, Serre duality is a duality for the coherent sheaf cohomology of algebraic varieties, proved by Jean-Pierre Serre. The basic version applies to vector bundles on a smooth projective variety, but Alexander Grothendieck found wide generalizations, for example to singular varieties. On an n-dimensional variety, the theorem says that a cohomology group is the dual space of another one, . Serre duality is the analog for coherent sheaf cohomology of Poincaré duality in topology, with the canonical line bundle replacing the orientation sheaf.
Sheaf (mathematics)In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts).
Line bundleIn mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example, a curve in the plane having a tangent line at each point determines a varying line: the tangent bundle is a way of organising these. More formally, in algebraic topology and differential topology, a line bundle is defined as a vector bundle of rank 1. Line bundles are specified by choosing a one-dimensional vector space for each point of the space in a continuous manner.