Summary
The input impedance of an electrical network is the measure of the opposition to current (impedance), both static (resistance) and dynamic (reactance), into a load network that is external to the electrical source network. The input admittance (the reciprocal of impedance) is a measure of the load network's propensity to draw current. The source network is the portion of the network that transmits power, and the load network is the portion of the network that consumes power. If the load network were replaced by a device with an output impedance equal to the input impedance of the load network (equivalent circuit), the characteristics of the source-load network would be the same from the perspective of the connection point. So, the voltage across and the current through the input terminals would be identical to the chosen load network. Therefore, the input impedance of the load and the output impedance of the source determine how the source current and voltage change. The Thévenin's equivalent circuit of the electrical network uses the concept of input impedance to determine the impedance of the equivalent circuit. If one were to create a circuit with equivalent properties across the input terminals by placing the input impedance across the load of the circuit and the output impedance in series with the signal source, Ohm's law could be used to calculate the transfer function. The values of the input and output impedance are often used to evaluate the electrical efficiency of networks by breaking them up into multiple stages and evaluating the efficiency of the interaction between each stage independently. To minimize electrical losses, the output impedance of the signal should be insignificant in comparison to the input impedance of the network being connected, as the gain is equivalent to the ratio of the input impedance to the total impedance (input impedance + output impedance). In this case, (or ) The input impedance of the driven stage (load) is much larger than the output impedance of the drive stage (source).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related MOOCs

Loading