In computer engineering, a hardware description language (HDL) is a specialized computer language used to describe the structure and behavior of electronic circuits, and most commonly, digital logic circuits.
A hardware description language enables a precise, formal description of an electronic circuit that allows for the automated analysis and simulation of an electronic circuit. It also allows for the synthesis of an HDL description into a netlist (a specification of physical electronic components and how they are connected together), which can then be placed and routed to produce the set of masks used to create an integrated circuit.
A hardware description language looks much like a programming language such as C or ALGOL; it is a textual description consisting of expressions, statements and control structures. One important difference between most programming languages and HDLs is that HDLs explicitly include the notion of time.
HDLs form an integral part of electronic design automation (EDA) systems, especially for complex circuits, such as application-specific integrated circuits, microprocessors, and programmable logic devices.
Due to the exploding complexity of digital electronic circuits since the 1970s (see Moore's law), circuit designers needed digital logic descriptions to be performed at a high level without being tied to a specific electronic technology, such as ECL, TTL or CMOS. HDLs were created to implement register-transfer level abstraction, a model of the data flow and timing of a circuit.
There are two major hardware description languages: VHDL and Verilog. There are different types of description in them: "dataflow, behavioral and structural".
Example of dataflow of VHDL:
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY not1 IS
PORT(
a : IN STD_LOGIC;
b : OUT STD_LOGIC;
);
END not1;
ARCHITECTURE behavioral OF not1 IS
BEGIN
b
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Hardware compilation is the process of transforming specialized hardware description languages into circuit descriptions, which are iteratively refined, detailed and optimized. The course presents a
Students will acquire basic knowledge about methodologies and tools for the design, optimization, and verification of custom digital systems/hardware.
They learn how to design synchronous digital cir
The course introduces the fundamentals of digital integrated circuits and the technology aspects from a designers perspective. It focuses mostly on transistor level, but discusses also the extension t
Comprendre le fonctionnement des enseignes et des afficheurs à LED, depuis les petites enseignes à motifs fixes jusqu'aux écrans géants à LED. Apprendre à les fabriquer et à les programmer les microc
A system on a chip or system-on-chip (SoC ,ˈɛsoʊsiː; pl. SoCs ,ˈɛsoʊsiːz) is an integrated circuit that integrates most or all components of a computer or other electronic system. These components almost always include on-chip central processing unit (CPU), memory interfaces, input/output devices, input/output interfaces, and secondary storage interfaces, often alongside other components such as radio modems and a graphics processing unit (GPU) – all on a single substrate or microchip.
An application-specific integrated circuit (ASIC ˈeɪsɪk) is an integrated circuit (IC) chip customized for a particular use, rather than intended for general-purpose use, such as a chip designed to run in a digital voice recorder or a high-efficiency video codec. Application-specific standard product chips are intermediate between ASICs and industry standard integrated circuits like the 7400 series or the 4000 series. ASIC chips are typically fabricated using metal–oxide–semiconductor (MOS) technology, as MOS integrated circuit chips.
Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used to model electronic systems. It is most commonly used in the design and verification of digital circuits at the register-transfer level of abstraction. It is also used in the verification of analog circuits and mixed-signal circuits, as well as in the design of genetic circuits. In 2009, the Verilog standard (IEEE 1364-2005) was merged into the SystemVerilog standard, creating IEEE Standard 1800-2009.
Verification and testing of hardware heavily relies on cycle-accurate simulation of RTL.As single-processor performance is growing only slowly, conventional, single-threaded RTL simulation is becoming impractical for increasingly complex chip designs and s ...
EPFL2024
, , , , , ,
The design of low-power wearables for the biomedical domain has received a lot of attention in recent decades, as technological advances in chip manufacturing have allowed real-time monitoring of patients using low-complexity ML within the mW range. Despit ...
2024
, , ,
Machine learning algorithms such as Convolutional Neural Networks (CNNs) are characterized by high robustness towards quantization, supporting small-bitwidth fixed-point arithmetic at inference time with little to no degradation in accuracy. In turn, small ...