The depth of field (DOF) is the distance between the nearest and the furthest objects that are in acceptably sharp focus in an image captured with a camera. For cameras that can only focus on one object distance at a time, depth of field is the distance between the nearest and the farthest objects that are in acceptably sharp focus. "Acceptably sharp focus" is defined using a property called the "circle of confusion". The depth of field can be determined by focal length, distance to subject, the acceptable circle of confusion size, and aperture. Limitations of depth of field can sometimes be overcome with various techniques and equipment. The approximate depth of field can be given by: for a given circle of confusion (c), focal length (f), f-number (N), and distance to subject (u). As distance or the size of the acceptable circle of confusion increases, the depth of field increases; however, increasing the size of the aperture or increasing the focal length reduces the depth of field. Depth of field changes linearly with F-number and circle of confusion, but changes in proportion to the square of the focal length and the distance to the subject. As a result, photos taken at extremely close range have a proportionally much smaller depth of field. Sensor size affects DOF in counterintuitive ways. Because the circle of confusion is directly tied to the sensor size, decreasing the size of the sensor while holding focal length and aperture constant will decrease the depth of field (by the crop factor). The resulting image however will have a different field of view. If the focal length is altered to maintain the field of view, the change in focal length will counter the decrease of DOF from the smaller sensor and increase the depth of field (also by the crop factor). For a given subject framing and camera position, the DOF is controlled by the lens aperture diameter, which is usually specified as the f-number (the ratio of lens focal length to aperture diameter).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (8)
CS-413: Computational photography
The students will gain the theoretical knowledge in computational photography, which allows recording and processing a richer visual experience than traditional digital imaging. They will also execute
MICRO-471: Fundamentals of integrated photonic components
This course gives an introduction to basic integrated photonics components that are at the core of photonic nanotechnologies today. The course combines theoretical description with practical lab work
MSE-352: Introduction to microscopy + Laboratory work
Ce cours d'introduction à la microscopie a pour but de donner un apperçu des différentes techniques d'analyse de la microstructure et de la composition des matériaux, en particulier celles liées aux m
Show more
Related lectures (32)
Image Acquisition
Covers the basics of image acquisition, including optical devices, resolution factors, lens distortions, and sensor technologies.
Gaussian Beams: Properties and Applications
Explores Gaussian beams, beam quality, optical fibers, laser diode stacks, and mask projection systems.
Camera Calibration: Basics
Introduces camera calibration basics, including parameters estimation, pinhole model limitations, lens imaging, depth of field, and lens distortions.
Show more
Related publications (122)

Laser-based manufacturing of freeform glass micro-optics through topological transformation

Samuel Youcef Benketaf

Glass has been the material of choice for making optical elements, in large part due to its intrinsic properties: a temperature-dependent viscosity, which enables shaping the material into a broad variety of functional and artistic glassware. Silica glass ...
EPFL2024

Real-Time Localization for Closed-Loop Control of Assistive Furniture

Auke Ijspeert, Alexandre Massoud Alahi, Lixuan Tang, Anastasia Bolotnikova, Chuanfang Ning, George Adaimi

For people with limited mobility, navigating in cluttered indoor environment is challenging. In this work, we propose a mobile assistive furniture suite that is designed to ease the life of people with special needs in indoor movement. To enable intelligen ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

Ex uno plures: how to construct high-speed movies of collapsing cavitation bubbles from a single image

Mohamed Farhat, Davide Bernardo Preso, Armand Baptiste Sieber

The time-resolved visualization of the dynamics of a cavitation bubble usually requires the use of expensive high-speed cameras, which often provide a limited spatial resolution. In the present study, we propose an alternative to these high-speed imaging t ...
New York2023
Show more
Related concepts (16)
F-number
An f-number is a measure of the light-gathering ability of any optical system like a camera lens or even the human eye. It is calculated by dividing the system's focal length by the diameter of the entrance pupil. The f-number is also known as the focal ratio, f-ratio, or f-stop, and it is key in determining the depth of field, rate of light scattering, and exposure of a photograph. The f-number is dimensionless that is usually expressed using a lower-case hooked f with the format N, where N is the f-number.
Aperture
In optics, an aperture is a hole or an opening through which light travels. More specifically, the aperture and focal length of an optical system determine the cone angle of the bundle of rays that come to a focus in the . An optical system typically has many openings or structures that limit the ray bundles (ray bundles are also known as pencils of light). These structures may be the edge of a lens or mirror, or a ring or other fixture that holds an optical element in place, or may be a special element such as a diaphragm placed in the optical path to limit the light admitted by the system.
Focal length
The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power. A positive focal length indicates that a system converges light, while a negative focal length indicates that the system diverges light. A system with a shorter focal length bends the rays more sharply, bringing them to a focus in a shorter distance or diverging them more quickly.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.