Free objectIn mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set A can be thought of as being a "generic" algebraic structure over A: the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices. The concept is a part of universal algebra, in the sense that it relates to all types of algebraic structure (with finitary operations).
Rng (algebra)In mathematics, and more specifically in abstract algebra, a rng (or non-unital ring or pseudo-ring) is an algebraic structure satisfying the same properties as a ring, but without assuming the existence of a multiplicative identity. The term rng (IPA: rʊŋ) is meant to suggest that it is a ring without i, that is, without the requirement for an identity element. There is no consensus in the community as to whether the existence of a multiplicative identity must be one of the ring axioms (see ).
Free algebraIn mathematics, especially in the area of abstract algebra known as ring theory, a free algebra is the noncommutative analogue of a polynomial ring since its elements may be described as "polynomials" with non-commuting variables. Likewise, the polynomial ring may be regarded as a free commutative algebra. For R a commutative ring, the free (associative, unital) algebra on n indeterminates {X1,...,Xn} is the free R-module with a basis consisting of all words over the alphabet {X1,...
Category of groupsIn mathematics, the Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a . The study of this category is known as group theory. There are two forgetful functors from Grp, M: Grp → Mon from groups to monoids and U: Grp → Set from groups to . M has two adjoints: one right, I: Mon→Grp, and one left, K: Mon→Grp. I: Mon→Grp is the functor sending every monoid to the submonoid of invertible elements and K: Mon→Grp the functor sending every monoid to the Grothendieck group of that monoid.
Full and faithful functorsIn , a faithful functor is a functor that is injective on hom-sets, and a full functor is surjective on hom-sets. A functor that has both properties is called a fully faithful functor. Explicitly, let C and D be () and let F : C → D be a functor from C to D. The functor F induces a function for every pair of objects X and Y in C. The functor F is said to be faithful if FX,Y is injective full if FX,Y is surjective fully faithful (= full and faithful) if FX,Y is bijective for each X and Y in C.
MorphismIn mathematics, particularly in , a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in analysis and topology, continuous functions, and so on.
Concrete categoryIn mathematics, a concrete category is a that is equipped with a faithful functor to the (or sometimes to another category, see Relative concreteness below). This functor makes it possible to think of the objects of the category as sets with additional structure, and of its morphisms as structure-preserving functions. Many important categories have obvious interpretations as concrete categories, for example the and the , and trivially also the category of sets itself. On the other hand, the is not concretizable, i.
Adjoint functorsIn mathematics, specifically , adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems (i.e.
Variety (universal algebra)In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras, and (direct) products.
Monad (category theory)In , a branch of mathematics, a monad (also triple, triad, standard construction and fundamental construction) is a in the of endofunctors of some fixed category. An endofunctor is a functor mapping a category to itself, and a monad is an endofunctor together with two natural transformations required to fulfill certain coherence conditions. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operators on partially ordered sets to arbitrary categories.