Nuclear weapon designNuclear weapon designs are physical, chemical, and engineering arrangements that cause the physics package of a nuclear weapon to detonate. There are three existing basic design types: pure fission weapons, the simplest, least technically demanding, were the first nuclear weapons built and, so far, the only type ever used in warfare, by the United States on Japan in World War II boosted fission weapons increase yield beyond that of the implosion design, by using small quantities of fusion fuel to enhance the fission chain reaction.
Gas-cooled fast reactorThe gas-cooled fast reactor (GFR) system is a nuclear reactor design which is currently in development. Classed as a Generation IV reactor, it features a fast-neutron spectrum and closed fuel cycle for efficient conversion of fertile uranium and management of actinides. The reference reactor design is a helium-cooled system operating with an outlet temperature of 850 °C using a direct Brayton closed-cycle gas turbine for high thermal efficiency.
Inertial confinement fusionInertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with fuel. The targets are small pellets, typically containing deuterium (2H) and tritium (3H). Energy is deposited in the target's outer layer, which explodes outward. This produces a reaction force in the form of shock waves that travel through the target. The waves compress and heat it. Sufficiently powerful shock waves generate fusion.
Nuclear power plantA nuclear power plant (NPP) is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a generator that produces electricity. , the International Atomic Energy Agency reported there were 412 nuclear power reactors in operation in 31 countries around the world, and 57 nuclear power reactors under construction.
Reduced moderation water reactorThe Reduced-Moderation Water Reactor (RMWR), also referred to as the Resource-renewable BWR, is a proposed type of light water moderated nuclear power reactor, featuring some characteristics of a fast neutron reactor, thereby combining the established and proven technology of light water reactors with the desired features of fast neutron reactors. The RMWR concept builds upon the Advanced Boiling Water Reactor and is under active development in theoretical studies, particularly in Japan.
Heavy waterHeavy water (deuterium oxide, 2H2O, D2O) is a form of water whose hydrogen atoms are all deuterium (2H or D, also known as heavy hydrogen) rather than the common hydrogen-1 isotope (1H or H, also called protium) that makes up most of the hydrogen in normal water. The presence of the heavier hydrogen isotope gives the water different nuclear properties, and the increase in mass gives it slightly different physical and chemical properties when compared to normal water. Deuterium is a heavy hydrogen isotope.
Generation IV reactorGeneration IV reactors (Gen IV) are nuclear reactor design technologies that are envisioned as successors of generation III reactors. The Generation IV International Forum (GIF) - an international organization that coordinates the development of generation IV reactors - specifically selected six reactor technologies as candidates for generation IV reactors. The designs target improved safety, sustainability, efficiency, and cost.
Aneutronic fusionAneutronic fusion is any form of fusion power in which very little of the energy released is carried by neutrons. While the lowest-threshold nuclear fusion reactions release up to 80% of their energy in the form of neutrons, aneutronic reactions release energy in the form of charged particles, typically protons or alpha particles. Successful aneutronic fusion would greatly reduce problems associated with neutron radiation such as damaging ionizing radiation, neutron activation, reactor maintenance, and requirements for biological shielding, remote handling and safety.
Lockheed Martin Compact Fusion ReactorThe Lockheed Martin Compact Fusion Reactor (CFR) is a fusion power project at Lockheed Martin’s Skunk Works. Its high-beta configuration, which implies that the ratio of plasma pressure to magnetic pressure is greater than or equal to 1 (compared to tokamak designs' 0.05), allows a compact design and expedited development. The project was active between 2010 and 2019, after that date there have been no updates and it appears the division has shut down.
TritiumTritium () or hydrogen-3 (symbol T or ^3H) is a rare and radioactive isotope of hydrogen with a half-life of about 12 years. The nucleus of tritium (t, sometimes called a triton) contains one proton and two neutrons, whereas the nucleus of the common isotope hydrogen-1 (protium) contains one proton and zero neutrons, and that of hydrogen-2 (deuterium) contains one proton and one neutron. Naturally occurring tritium is extremely rare on Earth. The atmosphere has only trace amounts, formed by the interaction of its gases with cosmic rays.