Semiclassical methods in conformal field theories scrutinized by the epsilon-expansion
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We study the response of a He-4 detector to the interaction of sub-GeV dark matter using an effective field theory for the superfluid. We compute the lifetime of the phonon, which agrees with what known from standard techniques, hence providing an importan ...
In arXiv:1909.01269 it was shown that the scaling dimension of the lightest charge n operator in the U (1) model at the Wilson-Fisher fixed point in D = 4 - epsilon can be computed semiclassically for arbitrary values of lambda n, where lambda is the pertu ...
This thesis presents studies in strongly coupled Renormalization Group (RG) flows. In the first part, we analyze the subject of non-local Conformal Field Theories (CFTs), arising as continuous phase transitions of statistical models with long-range interac ...
We study the kinematics of correlation functions of local and extended operators in a conformal field theory. We present a new method for constructing the tensor structures associated to primary operators in an arbitrary bosonic representation of the Loren ...
We argue that nonperturbative CFT correlation functions admit a Mellin amplitude representation. Perturbative Mellin representation readily follows. We discuss the main properties of nonperturbative CFT Mellin amplitudes: subtractions, analyticity, unitari ...
This thesis is devoted to the study of the local fields in the Ising model. The scaling limit of the critical Ising model is conjecturally described by Conformal Field Theory. The explicit predictions for the building blocks of the continuum theory (spin a ...
How can a renormalization group fixed point be scale invariant without being conformal? Polchinski (1988) showed that this may happen if the theory contains a virial current a non-conserved vector operator of dimension exactly (d - 1), whose divergence exp ...
Conformal field theories have been long known to describe the fascinating universal physics of scale invariant critical points. They describe continuous phase transitions in fluids, magnets, and numerous other materials, while at the same time sit at the h ...
We consider Lorentzian CFT Wightman functions in momentum space. In particular, we derive a set of reference formulas for computing two- and three-point functions, restricting our attention to three-point functions where the middle operator (corresponding ...
We set up a scattering experiment of matter against an impurity which separates two generic one-dimensional critical quantum systems. We compute the flux of reflected and transmitted energy, thus defining a precise measure of the transparency of the interf ...