Projection formulaIn algebraic geometry, the projection formula states the following: For a morphism of ringed spaces, an -module and a locally free -module of finite rank, the natural maps of sheaves are isomorphisms. There is yet another projection formula in the setting of étale cohomology.
Geometric quotientIn algebraic geometry, a geometric quotient of an algebraic variety X with the action of an algebraic group G is a morphism of varieties such that (i) For each y in Y, the fiber is an orbit of G. (ii) The topology of Y is the quotient topology: a subset is open if and only if is open. (iii) For any open subset , is an isomorphism. (Here, k is the base field.) The notion appears in geometric invariant theory. (i), (ii) say that Y is an orbit space of X in topology. (iii) may also be phrased as an isomorphism of sheaves .
Derived algebraic geometryDerived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over ), simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness (e.g., Tor) of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements.
Éléments de géométrie algébriqueLes Éléments de géométrie algébrique, par Alexandre Grothendieck (rédigés avec la collaboration de Jean Dieudonné), ou EGA en abrégé, sont un traité inachevé de pages, en français, sur la géométrie algébrique, qui a été publié (en huit parties ou fascicules) entre 1960 et 1967 par l'Institut des hautes études scientifiques. Grothendieck tente d'y établir systématiquement les fondements de la géométrie algébrique, et y construit le concept des schémas, et le définit.
CodimensionLa codimension est une notion de géométrie, rencontrée en algèbre linéaire, en géométrie différentielle et en géométrie algébrique. C'est une mesure de la différence de tailles entre un espace et un sous-espace. La codimension dans un espace vectoriel E d'un sous-espace vectoriel F est la dimension de l'espace vectoriel quotient E/F : Cette codimension est aussi égale à la dimension de n'importe quel supplémentaire de F dans E car tous sont isomorphes à E/F. Il résulte de la définition que F = E si et seulement si codim(F) = 0.
Classe de Stiefel-WhitneyEn topologie algébrique, les classes de Stiefel-Whitney sont des classes caractéristiques associées aux fibrés vectoriels réels de rang fini. Elles constituent donc un analogue réel des classes de Chern dans le cas complexe. Elles portent les noms de Eduard Stiefel et de Hassler Whitney. Toute classe caractéristique associée aux fibrés vectoriels réels apparaît comme un polynôme en les classes de Stiefel-Whitney.
Anneau localEn mathématiques, et plus particulièrement en algèbre commutative, un anneau local est un anneau commutatif possédant un unique idéal maximal. En géométrie algébrique, les anneaux locaux représentent les fonctions définies au voisinage d'un point donné. Pour tout anneau A, les propriétés suivantes sont équivalentes : A est local ; ses éléments non inversibles forment un idéal (qui sera alors l'idéal maximal de A et coïncidera avec son radical de Jacobson) ; ses éléments non inversibles appartiennent à un même idéal propre ; pour tout élément a de A, soit a soit 1 – a est inversible ; pour tout élément a de A, soit a soit 1 – a est inversible à gauche ; il existe un idéal maximal M tel que pour tout élément a de M, 1 + a est inversible.
Complex torusIn mathematics, a complex torus is a particular kind of complex manifold M whose underlying smooth manifold is a torus in the usual sense (i.e. the cartesian product of some number N circles). Here N must be the even number 2n, where n is the complex dimension of M. All such complex structures can be obtained as follows: take a lattice Λ in a vector space V isomorphic to Cn considered as real vector space; then the quotient group is a compact complex manifold. All complex tori, up to isomorphism, are obtained in this way.
Quasi-projective varietyIn mathematics, a quasi-projective variety in algebraic geometry is a locally closed subset of a projective variety, i.e., the intersection inside some projective space of a Zariski-open and a Zariski-closed subset. A similar definition is used in scheme theory, where a quasi-projective scheme is a locally closed subscheme of some projective space. An affine space is a Zariski-open subset of a projective space, and since any closed affine subset can be expressed as an intersection of the projective completion and the affine space embedded in the projective space, this implies that any affine variety is quasiprojective.
Hilbert series and Hilbert polynomialIn commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homogeneous components of the algebra. These notions have been extended to filtered algebras, and graded or filtered modules over these algebras, as well as to coherent sheaves over projective schemes.