Fonction méromorpheEn mathématiques, et plus précisément en analyse complexe, une fonction méromorphe est une fonction holomorphe dans tout le plan complexe, sauf éventuellement sur un ensemble de points isolés dont chacun est un pôle pour la fonction. Cette terminologie s'explique par le fait qu'en grec ancien, meros (μέρος) signifie « partie » et holos (ὅλος) signifie « entier ». Le théorème de factorisation de Hadamard affirme que toute fonction méromorphe peut s'écrire comme le rapport de deux fonctions entières (dont celle du dénominateur n'est pas identiquement nulle) : les pôles de la fonction correspondent aux zéros du dénominateur.
Anneau (mathématiques)vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.
Théorie des singularitésvignette|droite|Visualisation de la fonction (x, y) → x2 + y2 Dans l'acception que lui a donnée René Thom, la théorie des singularités consiste à étudier des objets et des familles d'objets suivant leur degré de généricité. Dans une famille, l'objet peut subir des changements d'états ce que l'on appelle une bifurcation. Un exemple simple est donné par les courbes de niveau de la fonction : La courbe de niveau pour une valeur positive est un cercle. La valeur 0 est singulière et pour les valeurs négatives, la courbe est vide.
Fiber product of schemesIn mathematics, specifically in algebraic geometry, the fiber product of schemes is a fundamental construction. It has many interpretations and special cases. For example, the fiber product describes how an algebraic variety over one field determines a variety over a bigger field, or the pullback of a family of varieties, or a fiber of a family of varieties. Base change is a closely related notion. The of schemes is a broad setting for algebraic geometry.
Espace tangent (géométrie algébrique)En géométrie algébrique, on peut définir la notion d'espace tangent (de Zariski) sans faire (explicitement) de calcul différentiel. C'est en quelque sorte une première approximation de la structure locale du schéma. Soit A un anneau local d'idéal maximal M. Soit le corps résiduel de A. Pour a ∈ A et m, m ∈ M, on remarque que avec M2 le produit d'idéal de M par lui-même. Ainsi le quotient de A-modules est un -espace vectoriel ; on l'appelle espace cotangent et son dual espace tangent de Zariski de . Notons-le .
Site (mathématiques)En théorie des catégories, une branche des mathématiques, une topologie de Grothendieck est une structure sur une catégorie permettant de voir certains objets de comme les ensembles ouverts d'un espace topologique. Une catégorie munie d'une topologie de Grothendieck est appelée un site. Une topologie de Grothendieck axiomatise la notion de recouvrement d'un espace topologique par des ouverts. Cela permet de généraliser la définition de faisceaux, et leur cohomologie, à un site quelconque.
List of complex and algebraic surfacesThis is a list of named algebraic surfaces, compact complex surfaces, and families thereof, sorted according to their Kodaira dimension following Enriques–Kodaira classification. Projective plane Cone (geometry) Cylinder Ellipsoid Hyperboloid Paraboloid Sphere Spheroid Cayley nodal cubic surface, a certain cubic surface with 4 nodes Cayley's ruled cubic surface Clebsch surface or Klein icosahedral surface Fermat cubic Monkey saddle Parabolic conoid Plücker's conoid Whitney umbrella Châtelet surfaces Dupin
Geometric genusIn algebraic geometry, the geometric genus is a basic birational invariant p_g of algebraic varieties and complex manifolds. The geometric genus can be defined for non-singular complex projective varieties and more generally for complex manifolds as the Hodge number h^n,0 (equal to h^0,n by Serre duality), that is, the dimension of the canonical linear system plus one. In other words for a variety V of complex dimension n it is the number of linearly independent holomorphic n-forms to be found on V.
Variété de SteinEn mathématiques, et plus précisément en théorie des variétés complexes en plusieurs variables, une variété de Stein est une sous-variété complexe de l'espace vectoriel de dimension complexe n. Ils ont été présentés par et nommés d'après Karl Stein. Un espace de Stein est similaire à une variété de Stein mais est autorisé à avoir des singularités. Les espaces de Stein sont les analogues des variétés affines ou des schémas affines en géométrie algébrique.
Courbe cubiqueEn mathématiques, une courbe cubique est une courbe algébrique plane définie par une équation du troisième degré en les coordonnées homogènes [X:Y:Z] du plan projectif ; ou bien c'est la version non homogène pour l'espace affine obtenue en faisant Z = 1 dans une telle équation. Ici F est une combinaison linéaire non nulle des monômes de degré trois X3, X2Y, ..., Z3 en X,Y et Z. Ceux-ci sont au nombre de dix ; donc les courbes cubiques forment un espace projectif de dimension 9, au-dessus de n'importe quel corps commutatif K donné.