Glossary of algebraic geometryThis is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
Faisceau injectifEn mathématiques, un faisceau injectif est un d'une catégorie abélienne de faisceaux. Typiquement, dans la catégorie des faisceaux de groupes abéliens sur un espace topologique fixé, un faisceau est dit injectif lorsque, pour tout sous-faisceau d'un faisceau , tout morphisme injectif de dans se prolonge en un morphisme de dans . Autrement dit, le foncteur (contravariant) exact à gauche est exact. On en déduit immédiatement : Pour tout point de , il existe un plongement de la fibre dans un groupe abélien injectif .
Lemme de PoincaréLe lemme de Poincaré est un résultat fondamental en analyse à plusieurs variables et en géométrie différentielle. Il concerne les formes différentielles (implicitement de classe C) sur une variété différentielle (implicitement lisse). D'après le théorème de Schwarz, toute forme différentielle exacte est fermée. Le lemme de Poincaré assure une réciproque partielle : Sous ces hypothèses, la conclusion du lemme de Poincaré se reformule en termes de cohomologie de De Rham. En particulier, toute forme différentielle fermée est localement exacte.
Variété algébriqueUne variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés.
Module injectifEn mathématiques, et plus spécifiquement en algèbre homologique, un module injectif est un module Q (à gauche par exemple) sur un anneau A tel que pour tout morphisme injectif f : X → Y entre deux A-modules (à gauche) et pour tout morphisme g : X → Q, il existe un morphisme h : Y → Q tel que hf = g, c'est-à-dire tel que le diagramme suivant commute : center Autrement dit : Q est injectif si pour tout module Y, tout morphisme d'un sous-module de Y vers Q s'étend à Y.
Topos (mathématiques)En mathématiques, un topos (au pluriel topos ou topoï) est un type particulier de catégorie. La théorie des topoï est polyvalente et est utilisée dans des domaines aussi variés que la logique, la topologie ou la géométrie algébrique. Un topos peut être défini comme une catégorie pourvue : de limites et colimites finies ; d'exponentielles ; d'un . D'autres définitions équivalentes sont données plus bas.
Espace compactement engendréEn mathématiques, un espace topologique est dit compactement engendré si c'est un k-espace faiblement Hausdorff. Cette notion intervient en théorie de l'homotopie, dans l'étude des CW-complexes. Un espace X est : un k-espace si toute partie « compactement fermée » de X est fermée (une partie F de X est dite compactement fermée si pour toute application continue f d'un compact K dans X, est fermé dans K) ; faiblement Hausdorff si toute application continue d'un compact dans X est fermée.
Groupe topologiqueEn mathématiques, un groupe topologique est un groupe muni d'une topologie compatible avec la structure de groupe, c'est-à-dire telle que la loi de composition interne du groupe et le passage à l'inverse sont deux applications continues. L'étude des groupes topologiques mêle donc des raisonnements d'algèbre et de topologie. La structure de groupe topologique est une notion essentielle en topologie algébrique. Les deux axiomes de la définition peuvent être remplacés par un seul : Un morphisme de groupes topologiques est un morphisme de groupes continu.
Géométrie énumérativeLa géométrie énumérative est une branche des mathématiques, et plus précisément de la géométrie algébrique, qui étudie le nombre de solutions à des questions de géométrie, principalement en utilisant les méthodes de la . Le problème des contacts (attribué à Apollonios) est un des premiers exemples d'un problème de géométrie énumérative, demandant de déterminer le nombre de cercles tangents à trois cercles donnés et de les construire.
Groupe (mathématiques)vignette|Les manipulations possibles du Rubik's Cube forment un groupe. En mathématiques, un groupe est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni d'une loi de composition interne associative admettant un élément neutre et, pour chaque élément de l'ensemble, un élément symétrique. La structure de groupe est commune à de nombreux ensembles de nombres — par exemple les nombres entiers relatifs, munis de la loi d'addition.