Introduit des modèles de Markov cachés, expliquant les problèmes de base et les algorithmes comme Forward-Backward, Viterbi et Baum-Welch, en mettant laccent sur lattente-Maximisation.
Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.
Explore le couplage des chaînes de Markov et la preuve du théorème ergodique, en mettant l'accent sur la convergence des distributions et les propriétés de la chaîne.
Explore les chaînes de Markov et leurs applications dans des algorithmes, en se concentrant sur l'impatience des utilisateurs et la génération d'échantillons fidèles.