Explore les géodésiques, le transport parallèle et le tenseur de Riemann sur les variétés bidimensionnelles, en mettant l'accent sur les concepts fondamentaux de la géométrie différentielle.
Explore les surfaces minimales, la courbure, l'opérateur Laplace-Beltrami, les solutions numériques, le lissage laplacien, le flux de diffusion et l'intégration du temps.
Couvre le cadre pour les plaques, les énergies de flexion et d'étirement, et Föppl-von Kármán Equations, explorant les courbures moyennes et gaussiennes.
Couvre les connexions sur les collecteurs, les connexions symétriques, les crochets Lie, et la compatibilité avec la métrique en géométrie Riemannienne.