Catégorie

Distribution (mathématiques)

Concepts associés (46)
Problème aux limites
En analyse, un problème aux limites est constitué d'une équation différentielle (ou plus généralement aux dérivées partielles) dont on recherche une solution prenant de plus des valeurs imposées en des limites du domaine de résolution. Contrairement au problème analogue dit de Cauchy, où une ou plusieurs conditions en un même endroit sont imposées (typiquement la valeur de la solution et de ses dérivées successives en un point), auquel le théorème de Cauchy-Lipschitz apporte une réponse générale, les problèmes aux limites sont souvent des problèmes difficiles, et dont la résolution peut à chaque fois conduire à des considérations différentes.
Valeur propre, vecteur propre et espace propre
En mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Équation aux dérivées partielles hyperbolique
En mathématiques, un problème hyperbolique ou équation aux dérivées partielles hyperbolique est une classe d'équations aux dérivées partielles (EDP) modélisant des phénomènes de propagation, émergeant par exemple naturellement en mécanique. Un archétype d'équation aux dérivées partielles hyperbolique est l'équation des ondes : Les solutions des problèmes hyperboliques possèdent des propriétés ondulatoires. Si une perturbation localisée est faite sur la donnée initiale d'un problème hyperbolique, alors les points de l'espace éloignés du support de la perturbation ne ressentiront pas ses effets immédiatement.
Régularité par morceaux
En mathématiques, les énoncés de certaines propriétés d'analyse et résultats de convergence se réfèrent à des fonctions vérifiant des hypothèses telles que continues par morceaux, dérivables par morceaux Ces fonctions sont regroupées par classes de régularité qui sont autant d'espaces vectoriels emboîtés, appelés « classe C par morceaux » et notés C. vignette|Cette fonction n'est pas continue sur R. En revanche, elle y est continue par morceaux. Une fonction f est continue par morceaux sur le segment [a, b] s’il existe une subdivision σ : a = a0 < .
Valeur principale de Cauchy
En mathématiques, la valeur principale de Cauchy, appelée ainsi en l'honneur d'Augustin Louis Cauchy, associe une valeur à certaines intégrales impropres qui resteraient autrement indéfinies. Soit c une singularité d'une fonction d'une variable réelle f et supposons que pour a
Fonction C∞ à support compact
En mathématiques, une fonction C à support compact (également appelée fonction test) est une fonction infiniment dérivable dont le support est compact. Ces fonctions sont au cœur de la théorie des distributions, puisque ces dernières sont construites comme éléments du dual topologique de l'espace des fonctions tests. Les fonctions C à support compact sont également utilisées pour construire des suites régularisantes et des partitions de l'unité de classe C.
Équation des ondes
L' ou est une équation aux dérivées partielles en physique qui régit la propagation d'une onde. C'est une équation vérifiée par de nombreux phénomènes ondulatoires de la vie courante comme le son ou la lumière. avec : l'opérateur laplacien ; l'onde vectorielle; une constante, vitesse de propagation de dans le milieu considéré ; L'utilisation du laplacien permet de s'affranchir du choix d'un système de coordonnées. avec : l'opérateur de dérivée partielle seconde en appliqué sur ; , les trois variables cartésiennes de l'espace, et celle du temps.
Équation de Helmholtz
vignette|Application de l'équation de Helmholtz. Léquation de Helmholtz (d'après le physicien Hermann von Helmholtz) est une équation aux dérivées partielles elliptique qui apparaît lorsque l'on cherche des solutions harmoniques de l'équation de propagation des ondes de D'Alembert, appelées « modes propres », sur un domaine : Pour que le problème mathématique soit bien posé, il faut spécifier une condition aux limites sur le bord du domaine, par exemple : une condition de Dirichlet, une condition de Neumann, un mélange des deux précédentes etc.
Singularity function
Singularity functions are a class of discontinuous functions that contain singularities, i.e. they are discontinuous at their singular points. Singularity functions have been heavily studied in the field of mathematics under the alternative names of generalized functions and distribution theory. The functions are notated with brackets, as where n is an integer. The "" are often referred to as singularity brackets .
Théorie du potentiel
La théorie du potentiel est une branche des mathématiques qui s'est développée à partir de la notion physique de potentiel newtonien introduite par Poisson pour les besoins de la mécanique newtonienne. Elle concerne l'étude de l'opérateur laplacien et notamment des fonctions harmoniques et sous-harmoniques. Dans le plan complexe par exemple, cette théorie commence par l'étude de la fonction potentiel et de son énergie définies de la manière suivante : Soit une mesure de Borel finie à support compact dans .

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.