Régression des moindres carrés partielsLa régression des moindres carrés partiels a été inventée en 1983 par Svante Wold et son père Herman Wold ; on utilise fréquemment l'abréviation anglaise régression PLS ( et/ou ). La régression PLS maximise la variance des prédicteurs (Xi) = X et maximise la corrélation entre X et la variable à expliquer Y. Cet algorithme emprunte sa démarche à la fois à l'analyse en composantes principales (ACP) et à la régression.
Elliptic boundary value problemIn mathematics, an elliptic boundary value problem is a special kind of boundary value problem which can be thought of as the stable state of an evolution problem. For example, the Dirichlet problem for the Laplacian gives the eventual distribution of heat in a room several hours after the heating is turned on. Differential equations describe a large class of natural phenomena, from the heat equation describing the evolution of heat in (for instance) a metal plate, to the Navier-Stokes equation describing the movement of fluids, including Einstein's equations describing the physical universe in a relativistic way.
Définition par récurrencevignette|4 étapes de la construction d'un flocon de Koch. Comme beaucoup d'autres fractales, cette courbe est définie par récurrence. En mathématiques, on parle de définition par récurrence pour une suite, c'est-à-dire une fonction définie sur les entiers positifs et à valeurs dans un ensemble donné. Une fonction est définie par récurrence quand, pour définir la valeur de la fonction en un entier donné, on utilise les valeurs de cette même fonction pour des entiers strictement inférieurs.
Variété complèteEn mathématiques, en particulier en géométrie algébrique, une variété algébrique complète est une variété algébrique X, telle que pour toute variété Y le morphisme de projection est une application fermée (c'est-à-dire qu'elle envoie les fermés sur des fermés). Cela peut être vu comme un analogue de la compacité en géométrie algébrique : en effet, un espace topologique X est compact si et seulement si l'application de projection ci-dessus est fermée par rapport aux produits topologiques.
Erdős–Rényi modelIn the mathematical field of graph theory, the Erdős–Rényi model refers to one of two closely related models for generating random graphs or the evolution of a random network. These models are named after Hungarian mathematicians Paul Erdős and Alfréd Rényi, who introduced one of the models in 1959. Edgar Gilbert introduced the other model contemporaneously with and independently of Erdős and Rényi. In the model of Erdős and Rényi, all graphs on a fixed vertex set with a fixed number of edges are equally likely.
Partition d'un entierEn mathématiques, une partition d'un entier (parfois aussi appelée partage d'un entier) est une décomposition de cet entier en une somme d'entiers strictement positifs (appelés parties ou sommants), à l'ordre près des termes (à la différence du problème de composition tenant compte de l'ordre des termes). Une telle partition est en général représentée par la suite des termes de la somme, rangés par ordre décroissant. Elle est visualisée à l'aide de son diagramme de Ferrers, qui met en évidence la notion de partition duale ou conjuguée.
Groupe résolubleEn mathématiques, un groupe résoluble est un groupe qui peut être construit à partir de groupes abéliens par une suite finie d'extensions. Théorème d'Abel (algèbre) La théorie des groupes tire son origine de la recherche de solutions générales (ou de leur absence) pour les racines des polynômes de degré 5 ou plus. Le concept de groupe résoluble provient d'une propriété partagée par les groupes d'automorphismes des polynômes dont les racines peuvent être exprimées en utilisant seulement un nombre fini d'opérations élémentaires (racine n-ième, addition, multiplication, ).
Leopold VietorisLeopold Vietoris (né le à Radkersburg et mort le à Innsbruck) est un mathématicien autrichien, qui a connu une certaine célébrité en raison de sa longévité exceptionnelle. Il est connu comme mathématicien pour ses contributions à la topologie et à d'autres domaines. Il s'est intéressé à l'histoire des mathématiques et a été un adepte de l'alpinisme. Il a fait ses études à l'université de Vienne, où il a obtenu son doctorat en 1920.
Ecological validityIn the behavioral sciences, ecological validity is often used to refer to the judgment of whether a given study's variables and conclusions (often collected in lab) are sufficiently relevant to its population (e.g. the "real world" context). Psychological studies are usually conducted in laboratories though the goal of these studies is to understand human behavior in the real-world. Ideally, an experiment would have generalizable results that predict behavior outside of the lab, thus having more ecological validity.
Identité trigonométrique pythagoricienneL'identité trigonométrique pythagoricienne exprime le théorème de Pythagore en termes de fonctions trigonométriques. Avec les formules de somme d'angles, c'est l'une des relations fondamentales entre les fonctions sinus et cosinus. Cette relation entre le sinus et le cosinus est parfois appelée l'identité trigonométrique fondamentale de Pythagore. Cette identité trigonométrique est donnée par la formule : où signifie .