Catégorie

Topologie géométrique

Concepts associés (45)
3-variété
En mathématiques, une 3-variété est une variété de dimension 3, au sens des variétés topologiques, ou différentielles (en dimension 3, ces catégories sont équivalentes). Certains phénomènes sont liés spécifiquement à la dimension 3, si bien qu'en cette dimension, des techniques particulières prévalent, qui ne se généralisent pas aux dimensions supérieures.
Nœud de trèfle
vignette|Faire un nœud de trèfle (vidéo) vignette|Surface de Seifert associée à un nœud de trèfle : il en forme le bord. En théorie des nœuds, le nœud de trèfle est le nœud le plus simple après le nœud trivial. C'est le seul nœud premier à trois croisements. On peut aussi le décrire comme nœud torique de type (2,3), son mot dans le groupe de tresses étant σ13. Une autre description (liée à la précédente) est l'intersection de la sphère unité dans C2 avec la courbe plane complexe d'équation .
Théorie des nœuds
thumb|right|Représentation d’un nœud torique de type (3, 8). La théorie des nœuds est une branche de la topologie qui consiste en l'étude mathématique de courbes présentant des liaisons avec elles-mêmes, un « bout de ficelle » idéalisé en lacets. Elle est donc très proche de la théorie des tresses qui comporte plusieurs chemins ou « bouts de ficelle ». left|thumb|Nœuds triviaux La théorie des nœuds a commencé vers 1860 et avec des travaux de Carl Friedrich Gauss liés à l'électromagnétisme.
Nœud (mathématiques)
En mathématiques, et plus particulièrement en géométrie et en topologie algébrique, un nœud est un plongement d'un cercle dans R, l'espace euclidien de dimension 3, considéré à des déformations continues près. Une différence essentielle entre les nœuds usuels et les nœuds mathématiques est que ces derniers sont fermés (sans extrémités permettant de les nouer ou de les dénouer) ; les propriétés physiques des nœuds réels, telles que la friction ou l'épaisseur des cordes, sont généralement également négligées.
Invariant de nœuds
thumb|Les deux nœuds sont équivalents, leur invariant est donc identique. En théorie des nœuds, un invariant de nœuds est une quantité définie pour chaque nœud qui est la même pour tous les nœuds équivalents. On parlera d'équivalence lorsqu'on peut passer d'un nœud à un autre par un ensemble de mouvements de Reidemeister. Ces invariants topologiques peuvent être de tout type : des booléens, des scalaires, des polynômes (polynôme d'Alexander, le polynôme de Jones, le ) ou encore le groupe fondamental du complément d'un nœud, les de Vassiliev et l'.
Polynôme de Jones
Le polynôme de Jones en théorie des nœuds est un invariant polynomial des nœuds (incomplet) introduit par Vaughan Jones en 1984. Plus précisément, c'est un invariant d'un nœud orienté ou d'un entrelacs orienté, qui est un polynôme de Laurent à coefficients entiers en la variable . Le polynôme de Jones est caractérisé par le fait qu'il prend la valeur 1 pour le nœud trivial et vérifie la « » (skein relation) suivante : où , et sont des diagrammes d'entrelacs orientés qui ne diffèrent que dans une petite région de la façon suivante center|200px Le polynôme de Jones, contrairement au polynôme d'Alexander, permet parfois de distinguer un nœud de son image par un miroir.
Polynôme d'Alexander
En mathématiques, et plus précisément en théorie des nœuds, le polynôme d'Alexander est un invariant de nœuds qui associe un polynôme à coefficients entiers à chaque type de nœud. C'est le premier découvert ; il l'a été par James Waddell Alexander II, en 1923. En 1969, John Conway en montra une version, appelée à présent le polynôme d'Alexander-Conway, pouvant être calculé à l'aide d'une « » (skein relation), mais l'importance n'en fut pas comprise avant la découverte du polynôme de Jones en 1984.
Entrelacs (théorie des nœuds)
En théorie des nœuds, un entrelacs est un enchevêtrement de plusieurs nœuds. L'étude des entrelacs et des nœuds est liée, plusieurs invariants s'interprétant plus naturellement dans le cadre général des entrelacs, au moyen notamment des relations d'écheveau. Un entrelacs est la donnée d'un plongement injectif d'une ou plusieurs copies du cercle S dans R ou dans S, appelées ses composantes, ou ses boucles. Deux entrelacs sont considérés équivalents lorsqu'ils sont identiques à isotopie près.
Crossing number (knot theory)
In the mathematical area of knot theory, the crossing number of a knot is the smallest number of crossings of any diagram of the knot. It is a knot invariant. By way of example, the unknot has crossing number zero, the trefoil knot three and the figure-eight knot four. There are no other knots with a crossing number this low, and just two knots have crossing number five, but the number of knots with a particular crossing number increases rapidly as the crossing number increases.
Homologie de Floer
L'homologie de Floer est une adaptation de l'homologie de Morse en dimension infinie. L'homologie de Floer symplectique (HFS) est une théorie homologique pour une variété symplectique munie d'un symplectomorphisme non-dégénéré. Si le symplectomorphisme est hamiltonien, l'homologie provient de l'étude de la fonctionnelle d'action symplectique sur le revêtement universel de l'espace des lacets de la variété symplectique. L'homologie de Floer symplectique est invariante par isotopie hamiltonienne du symplectomorphisme.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.