Idempotent matrixIn linear algebra, an idempotent matrix is a matrix which, when multiplied by itself, yields itself. That is, the matrix is idempotent if and only if . For this product to be defined, must necessarily be a square matrix. Viewed this way, idempotent matrices are idempotent elements of matrix rings. Examples of idempotent matrices are: Examples of idempotent matrices are: If a matrix is idempotent, then implying so or implying so or Thus, a necessary condition for a matrix to be idempotent is that either it is diagonal or its trace equals 1.
Canonical formIn mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and allows it to be identified in a unique way. The distinction between "canonical" and "normal" forms varies from subfield to subfield. In most fields, a canonical form specifies a unique representation for every object, while a normal form simply specifies its form, without the requirement of uniqueness.
Segment (mathématiques)vignette|Le segment . En géométrie, un segment de droite (souvent abrégé en « segment ») est une portion de droite délimitée par deux points, appelés extrémités du segment. Un segment reliant deux points et est noté ou et représente la partie de la droite qui se situe « entre » les points et . Intuitivement, un segment correspond à un fil tendu entre deux points, en négligeant l’épaisseur du fil et la déformation due à son poids.
HomomorphismIn algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός () meaning "same" and μορφή () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).
Théorème de WittEn algèbre, le théorème de Witt est un résultat sur lequel s'appuie toute la théorie des formes quadratiques. Il permet en effet de classifier les formes quadratiques sur un corps K donné et fonde la définition du groupe de Witt de K. À proprement parler il existe plusieurs énoncés qui sont qualifiés de théorèmes de Witt : pour préciser, on les appelle théorèmes de décomposition, d'extension et d'annulation de Witt. Dans ce faisceau de résultats, obtenus par Ernst Witt en 1937, c'est le théorème d'annulation qui est le plus souvent appelé le théorème de Witt.
Leibniz formula for determinantsIn algebra, the Leibniz formula, named in honor of Gottfried Leibniz, expresses the determinant of a square matrix in terms of permutations of the matrix elements. If is an matrix, where is the entry in the -th row and -th column of , the formula is where is the sign function of permutations in the permutation group , which returns and for even and odd permutations, respectively. Another common notation used for the formula is in terms of the Levi-Civita symbol and makes use of the Einstein summation notation, where it becomes which may be more familiar to physicists.
Base canoniqueEn mathématiques, plus précisément en algèbre linéaire, certains espaces vectoriels possèdent une base qualifiée de canonique ; il s'agit d'une base qui se présente de manière naturelle d'après la manière dont l'espace vectoriel est présenté. C'est ainsi que l'on parle de la base canonique de R, de la base canonique de l'espace vectoriel des matrices ou de celui des polynômes. En revanche sur un espace vectoriel quelconque, la notion n'a pas de sens : il n'y a pas de choix de base privilégiée.
Coordonnées homogènesEn mathématiques, et plus particulièrement en géométrie projective, les coordonnées homogènes (ou coordonnées projectives), introduites par August Ferdinand Möbius, rendent les calculs possibles dans l'espace projectif, comme les coordonnées cartésiennes le font dans l'espace euclidien. Les coordonnées homogènes sont largement utilisées en infographie et plus particulièrement pour la représentation de scènes en trois dimensions, car elles sont adaptées à la géométrie projective et elles permettent de caractériser les transformations de l'espace.
InverseEn mathématiques, l'inverse d'un élément x (s'il existe) est le nom donné à l'élément symétrique, lorsque la loi est notée multiplicativement. Dans le cas réel, il s'agit du nombre qui, multiplié par x, donne 1. On le note x ou 1/x. Par exemple, dans , l'inverse de 3 est , puisque . Soit un monoïde, un ensemble muni d'une loi de composition interne associative, qu'on note , et d'un élément neutre pour noté 1. Un élément est dit inversible à gauche (respectivement inversible à droite) s'il existe un élément tel que (respectivement ).
Analytic function of a matrixIn mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size. This is used for defining the exponential of a matrix, which is involved in the closed-form solution of systems of linear differential equations. There are several techniques for lifting a real function to a square matrix function such that interesting properties are maintained. All of the following techniques yield the same matrix function, but the domains on which the function is defined may differ.