Médiane (statistiques)En théorie des probabilités et en statistiques, la médiane est une valeur qui sépare la moitié inférieure et la moitié supérieure des termes d’une série statistique quantitative ou d’une variable aléatoire réelle. On peut la définir aussi pour une variable ordinale. La médiane est un indicateur de tendance centrale. Par comparaison avec la moyenne, elle est insensible aux valeurs extrêmes mais son calcul est un petit peu plus complexe. En particulier, elle ne peut s’obtenir à partir des médianes de sous-groupes.
Asymétrie (statistiques)En théorie des probabilités et statistique, le coefficient d'asymétrie (skewness en anglais) correspond à une mesure de l’asymétrie de la distribution d’une variable aléatoire réelle. C’est le premier des paramètres de forme, avec le kurtosis (les paramètres basés sur les moments d’ordre 5 et plus n’ont pas de nom attribué). En termes généraux, l’asymétrie d’une distribution est positive si la queue de droite (à valeurs hautes) est plus longue ou grosse, et négative si la queue de gauche (à valeurs basses) est plus longue ou grosse.
Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Loi du χ²En statistiques et en théorie des probabilités, la loi du centrée (prononcé « khi carré » ou « khi-deux ») avec k degrés de liberté est la loi de la somme de carrés de k lois normales centrées réduites indépendantes. La loi du est utilisée en inférence statistique et pour les tests statistiques notamment le test du χ2. La loi du χ2 non centrée généralise la loi du . Soient k variables aléatoires X, ... , X indépendantes suivant la loi normale centrée et réduite, c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1.
Moment (probabilités)En théorie des probabilités et en statistique, les moments d’une variable aléatoire réelle sont des indicateurs de la dispersion de cette variable. Le premier moment ordinaire, appelé moment d'ordre 1 est l'espérance (i.e la moyenne) de cette variable. Le deuxième moment centré d'ordre 2 est la variance. Ainsi, l'écart type est la racine carrée du moment centré d’ordre 2. Le moment d'ordre 3 est l'asymétrie. Le moment d'ordre 4 est le kurtosis. Le concept de moment est proche du concept de moment en physique.
Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Indicateur de dispersionEn statistique, un indicateur de dispersion mesure la variabilité des valeurs d’une série statistique. Il est toujours positif et d’autant plus grand que les valeurs de la série sont étalées. Les plus courants sont la variance, l'écart-type et l'écart interquartile. Ces indicateurs complètent l’information apportée par les indicateurs de position ou de tendance centrale, mesurés par la moyenne ou la médiane. Dans la pratique, c'est-à-dire dans l'industrie, les laboratoires ou en métrologie, où s'effectuent des mesurages, cette dispersion est estimée par l'écart type.
Robustesse (statistiques)En statistiques, la robustesse d'un estimateur est sa capacité à ne pas être perturbé par une modification dans une petite partie des données ou dans les paramètres du modèle choisi pour l'estimation. Ricardo A. Maronna, R. Douglas Martin et Victor J. Yohai; Robust Statistics - Theory and Methods, Wiley Series in Probability and Statistics (2006). Dagnelie P.; Statistique théorique et appliquée. Tome 2 : Inférence statistique à une et à deux dimensions, Paris et Bruxelles (2006), De Boeck et Larcier.
Théorème central limitethumb|upright=2|La loi normale, souvent appelée la « courbe en cloche ». Le théorème central limite (aussi appelé théorème limite central, théorème de la limite centrale ou théorème de la limite centrée) établit la convergence en loi de la somme d'une suite de variables aléatoires vers la loi normale. Intuitivement, ce résultat affirme qu'une somme de variables aléatoires indépendantes et identiquement distribuées tend (le plus souvent) vers une variable aléatoire gaussienne.
KurtosisEn théorie des probabilités et en statistique, le kurtosis (du nom féminin grec ancien κύρτωσις, « courbure »), aussi traduit par coefficient d’acuité, coefficient d’aplatissement et degré de voussure, est une mesure directe de l’acuité et une mesure indirecte de l'aplatissement de la distribution d’une variable aléatoire réelle. Il existe plusieurs mesures de l'acuité et le kurtosis correspond à la méthode de Pearson. C’est le deuxième des paramètres de forme, avec le coefficient d'asymétrie (les paramètres fondés sur les moments d’ordre 5 et plus n’ont pas de nom propre).