Entier friableEn théorie des nombres, un nombre friable, ou lisse, est un entier naturel dont l'ensemble des facteurs premiers sont petits, relativement à une borne donnée. Les entiers friables sont particulièrement importants dans la cryptographie basée sur la factorisation, qui constitue depuis une vingtaine d'années une branche dynamique de la théorie des nombres, avec des applications dans des domaines aussi variés que l'algorithmique (problème du logarithme discret), la théorie de la sommabilité (sommation friable des séries de Fourier), la théorie élémentaire des nombres premiers (preuve élémentaire du théorème des nombres premiers de Daboussi en 1984), la méthode du cercle (problème de Waring), le modèle de Billingsley, le modèle de , l', les théorèmes de type Erdős-Wintner, etc.
Fonction complètement multiplicativeEn théorie des nombres, les fonctions définies sur l'ensemble des entiers naturels non nuls et qui respectent les produits sont appelées fonctions complètement multiplicatives ou fonctions totalement multiplicatives. Elles font partie des fonctions multiplicatives, qui ne respectent que les produits de nombres premiers entre eux. En dehors de la théorie des nombres, le terme « fonction multiplicative » est souvent considéré comme synonyme de « fonction complètement multiplicative » tel que défini dans cet article.
Suite de Fibonaccivignette|Une juxtaposition de carrés dont les côtés ont pour longueur des nombres successifs de la suite de Fibonacci : 1, 1, 2, 3, 5, 8, 13 et 21. En mathématiques, la suite de Fibonacci est une suite d'entiers dans laquelle chaque terme est la somme des deux termes qui le précèdent. Notée , elle est définie par , et pour . Les termes de cette suite sont appelés nombres de Fibonacci et forment la : vignette|Représentation géométrique de la fraction continue de φ faisant apparaître les nombres de la suite de Fibonacci.
Terence TaoTerence Tao (sinogrammes traditionnels : 陶哲軒, sinogrammes simplifiés : 陶哲轩), né le à Adélaïde (Australie), est un mathématicien australien. Titulaire de nombreuses distinctions mathématiques parmi lesquelles la médaille Fields, il travaille principalement dans les domaines de l'analyse harmonique, des équations aux dérivées partielles, de la combinatoire, de la théorie analytique des nombres et de la théorie des représentations. De 1992 à 1996, il est doctorant à l'université de Princeton sous la direction d'Elias Stein.
Théorie des nombres transcendantsEn mathématiques, la théorie des nombres transcendants est une branche de la théorie des nombres qui étudie les nombres transcendants (nombres qui ne sont pas des solutions d'une équation polynomiale à coefficients entiers). Un nombre complexe α est dit transcendant si pour tout polynôme non nul P à coefficients entiers, P(α) ≠ 0. Il en est alors de même pour tout polynôme non nul à coefficients rationnels. Plus généralement, la théorie traite de l'indépendance algébrique des nombres. Un ensemble de nombres {α1, α2, .
Adelic algebraic groupIn abstract algebra, an adelic algebraic group is a semitopological group defined by an algebraic group G over a number field K, and the adele ring A = A(K) of K. It consists of the points of G having values in A; the definition of the appropriate topology is straightforward only in case G is a linear algebraic group. In the case of G being an abelian variety, it presents a technical obstacle, though it is known that the concept is potentially useful in connection with Tamagawa numbers.
Auxiliary functionIn mathematics, auxiliary functions are an important construction in transcendental number theory. They are functions that appear in most proofs in this area of mathematics and that have specific, desirable properties, such as taking the value zero for many arguments, or having a zero of high order at some point. Auxiliary functions are not a rigorously defined kind of function, rather they are functions which are either explicitly constructed or at least shown to exist and which provide a contradiction to some assumed hypothesis, or otherwise prove the result in question.
Modulo (mathematics)In mathematics, the term modulo ("with respect to a modulus of", the Latin ablative of modulus which itself means "a small measure") is often used to assert that two distinct mathematical objects can be regarded as equivalent—if their difference is accounted for by an additional factor. It was initially introduced into mathematics in the context of modular arithmetic by Carl Friedrich Gauss in 1801. Since then, the term has gained many meanings—some exact and some imprecise (such as equating "modulo" with "except for").
Caractère d'un groupe finiEn mathématiques, un caractère d'un groupe fini est une notion associée à la théorie des groupes. Un caractère d'un groupe fini G est un morphisme de groupes de G dans le groupe multiplicatif C* des nombres complexes non nuls. Ce concept permet de définir le groupe dual de G, composé de l'ensemble des caractères de G. Il est à la base de l'analyse harmonique sur les groupes abéliens finis. Cette notion correspond à un cas particulier de caractère d'une représentation d'un groupe fini.
Série harmoniqueEn mathématiques, la série harmonique est une série de nombres réels. C'est la série des inverses des entiers naturels non nuls. Elle tire son nom par analogie avec la moyenne harmonique, de la même façon que les séries arithmétiques et géométriques peuvent être mises en parallèle avec les moyennes arithmétiques et géométriques. Elle fait partie de la famille plus large des séries de Riemann, qui sont utilisées comme séries de référence : la nature d'une série est souvent déterminée en la comparant à une série de Riemann et en utilisant les théorèmes de comparaison.