Hyperbolic 3-manifoldIn mathematics, more precisely in topology and differential geometry, a hyperbolic 3-manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to −1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries (a Kleinian group).
Géométrisation des 3-variétésEn géométrie, la conjecture de géométrisation de Thurston affirme que les 3-variétés compactes peuvent être décomposées en sous-variétés admettant l'une des huit structures géométriques appelées géométries de Thurston. Formulée par William Thurston en 1976, cette conjecture fut démontrée par Grigori Perelman en 2003. On dit qu'une variété est fermée si elle est compacte et sans bord, et qu'elle est si elle n'est pas somme connexe de variétés qui ne sont pas des sphères.
Thurston elliptization conjectureWilliam Thurston's elliptization conjecture states that a closed 3-manifold with finite fundamental group is spherical, i.e. has a Riemannian metric of constant positive sectional curvature. A 3-manifold with a Riemannian metric of constant positive sectional curvature is covered by the 3-sphere, moreover the group of covering transformations are isometries of the 3-sphere. If the original 3-manifold had in fact a trivial fundamental group, then it is homeomorphic to the 3-sphere (via the covering map).
Haken manifoldIn mathematics, a Haken manifold is a compact, P2-irreducible 3-manifold that is sufficiently large, meaning that it contains a properly embedded two-sided incompressible surface. Sometimes one considers only orientable Haken manifolds, in which case a Haken manifold is a compact, orientable, irreducible 3-manifold that contains an orientable, incompressible surface. A 3-manifold finitely covered by a Haken manifold is said to be virtually Haken.
List of geometric topology topicsThis is a list of geometric topology topics. List of mathematical knots and links Knot (mathematics) Link (knot theory) Wild knots Examples of knots Unknot Trefoil knot Figure-eight knot (mathematics) Borromean rings Types of knots Torus knot Prime knot Alternating knot Hyperbolic link Knot invariants Crossing number Linking number Skein relation Knot polynomials Alexander polynomial Jones polynomial Knot group Writhe Quandle Seifert surface Braids Braid theory Braid group Kirby calculus Genus (mathematics
Nœud (mathématiques)En mathématiques, et plus particulièrement en géométrie et en topologie algébrique, un nœud est un plongement d'un cercle dans R, l'espace euclidien de dimension 3, considéré à des déformations continues près. Une différence essentielle entre les nœuds usuels et les nœuds mathématiques est que ces derniers sont fermés (sans extrémités permettant de les nouer ou de les dénouer) ; les propriétés physiques des nœuds réels, telles que la friction ou l'épaisseur des cordes, sont généralement également négligées.
Sphère d'homologieEn topologie algébrique, une sphère d'homologie (ou encore, sphère d'homologie entière) est une variété X de dimension n ≥ 1 qui a les mêmes groupes d'homologie que la n-sphère standard S, à savoir : H0(X,Z) = Z = Hn(X,Z) et Hi(X,Z) = {0} pour tout autre entier i. Une telle variété X est donc connexe, fermée (i.e. compacte et sans bord), orientable, et avec (à part b0 = 1) un seul nombre de Betti non nul : bn. Les sphères d'homologie rationnelle sont définies de façon analogue, avec l'homologie à coefficients rationnels.
Topologie en basses dimensionsEn mathématiques, la topologie en basses dimensions est la branche de la topologie qui concerne les variétés de dimension inférieure ou égale à quatre. Des sujets représentatifs en sont l'étude des variétés de dimension 3 et la théorie des nœuds et des tresses. Elle fait partie de la topologie géométrique. Un certain nombre d'avancées, à partir des années 1960, ont mis l'accent sur les basses dimensions en topologie.
Heegaard splittingIn the mathematical field of geometric topology, a Heegaard splitting (ˈhe̝ˀˌkɒˀ) is a decomposition of a compact oriented 3-manifold that results from dividing it into two handlebodies. Let V and W be handlebodies of genus g, and let ƒ be an orientation reversing homeomorphism from the boundary of V to the boundary of W. By gluing V to W along ƒ we obtain the compact oriented 3-manifold Every closed, orientable three-manifold may be so obtained; this follows from deep results on the triangulability of three-manifolds due to Moise.
Espace lenticulaireUn espace lenticulaire est une variété de dimension 3, construit comme espace quotient de la sphère S par l'action libre d'un groupe cyclique d'ordre premier. Les espaces lenticulaires forment une famille, dont les membres sont notés L(p, q). L'adjectif « lenticulaire » vient d'une certaine représentation du domaine fondamental du groupe cyclique, qui ressemble à l'intersection de deux cercles. Leur relative simplicité en fait des objets étudiés en topologie algébrique, notamment en théorie des nœuds, en K-théorie et en théorie du cobordisme.