Théorie des représentationsLa théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Tribu (mathématiques)En mathématiques, une tribu ou σ-algèbre (lire sigma-algèbre) ou plus rarement corps de Borel sur un ensemble X est un ensemble non vide de parties de X, stable par passage au complémentaire et par union dénombrable (donc aussi par intersection dénombrable). Les tribus permettent de définir rigoureusement la notion d'ensemble mesurable. Progressivement formalisées pendant le premier tiers du , les tribus constituent le cadre dans lequel s'est développée la théorie de la mesure.
Algèbre de Boole (structure)vignette|Exemple d'algèbre de Boole : l'ensemble des parties de l'ensemble {x, y, z} illustré par son diagramme de Hasse. En mathématiques, une algèbre de Boole, ou parfois anneau de Boole, est une structure algébrique étudiée en particulier en logique mathématique. Une algèbre de Boole peut être définie soit comme une structure ordonnée particulière, soit comme une structure algébrique particulière, soit comme un anneau (unitaire) dont tout élément égale son carré.
Mesure (mathématiques)En mathématiques, une mesure positive (ou simplement mesure quand il n'y a pas de risque de confusion) est une fonction qui associe une grandeur numérique à certains sous-ensembles d'un ensemble donné. Il s'agit d'un important concept en analyse et en théorie des probabilités. Intuitivement, la mesure d'un ensemble ou sous-ensemble est similaire à la notion de taille, ou de cardinal pour les ensembles discrets. Dans ce sens, la mesure est une généralisation des concepts de longueur, aire ou volume dans des espaces de dimension 1, 2 ou 3 respectivement.
Ensemble des parties d'un ensembleEn mathématiques, l'ensemble des parties d'un ensemble, parfois appelé ensemble puissance, est l'ensemble de tous les sous-ensembles d'un ensemble donné (y compris cet ensemble lui-même et l'ensemble vide). Soit un ensemble. L'ensemble des parties de est l'ensemble, généralement noté , dont les éléments sont les sous-ensembles de : Il est également parfois noté , ou (gothique), ou encore (P de Weierstrass). Dans la théorie des ensembles de Zermelo, l'existence, pour tout ensemble , d'un tel ensemble , est postulée par l'axiome de l'ensemble des parties, et son unicité résulte de l'axiome d'extensionnalité.
Algèbre de HeytingEn mathématiques, une algèbre de Heyting est une structure algébrique introduite en 1930 par le mathématicien néerlandais Arend Heyting pour rendre compte formellement de la logique intuitionniste de Brouwer, alors récemment développée. Les algèbres de Heyting sont donc pour la logique intuitionniste analogue à ce que sont des algèbres de Boole pour la logique classique : un modèle formel permettant d'en fixer les propriétés.