Anneau de valuation discrèteEn mathématiques, plus précisément en algèbre commutative, un anneau de valuation discrète est un anneau de valuation dont la valuation est discrète mais non triviale. Un anneau est de valuation discrète lorsqu'il est principal, qu'il ne possède qu'un idéal maximal, et que cet idéal est non nul. Cette notion est utilisée en théorie algébrique des nombres et en géométrie algébrique ; elle constitue un outil d'étude des anneaux noethériens, en particulier les anneaux de Dedekind.
ValuationEn mathématiques, plus particulièrement en géométrie algébrique et en théorie des nombres, une valuation, ou valuation de Krull, est une mesure de la multiplicité. La notion est une généralisation de la notion de degré ou d'ordre d'annulation d'un polynôme formel en algèbre, du degré de divisibilité par un nombre premier en théorie des nombres, de l'ordre d'un pôle en analyse complexe ou du nombre de points de contact entre deux variétés algébriques en géométrie algébrique.
Anneau noethérienEn mathématique, un anneau noethérien est un cas particulier d'anneau, c'est-à-dire d'un ensemble muni d'une addition et d'une multiplication compatible avec l'addition, au sens de la distributivité. De nombreuses questions mathématiques s'expriment dans un contexte d'anneau, les endomorphismes d'un espace vectoriel ou d'un module sur un anneau, les entiers algébriques de la théorie algébrique des nombres, ou encore les surfaces de la géométrie algébrique.
Algorithme d'Euclide étenduEn mathématiques, l'algorithme d'Euclide étendu est une variante de l'algorithme d'Euclide. À partir de deux entiers a et b, il calcule non seulement leur plus grand commun diviseur (PGCD), mais aussi un de leurs couples de coefficients de Bézout, c'est-à-dire deux entiers u et v tels que au + bv = PGCD(a, b). Quand a et b sont premiers entre eux, u est alors l'inverse pour la multiplication de a modulo b (et v est de la même façon l'inverse modulaire de b, modulo a), ce qui est un cas particulièrement utile.
Théorème des restes chinoisEn mathématiques, le théorème des restes chinois est un résultat d'arithmétique modulaire traitant de résolution de systèmes de congruences. Ce résultat, initialement établi pour Z/nZ, se généralise en théorie des anneaux. Ce théorème est utilisé en théorie des nombres. vignette|Exemple de Sun Zi : il y a 23 objets. La forme originale du théorème apparait sous forme de problème dans le livre de Sun Zi, le , datant du . Il est repris par le mathématicien chinois Qin Jiushao dans son ouvrage le Shùshū Jiǔzhāng (« Traité mathématique en neuf chapitres ») publié en 1247.
Théorème des unités de DirichletEn théorie algébrique des nombres, le théorème des unités de Dirichlet détermine, pour un corps de nombres K – c'est-à-dire pour une extension finie du corps Q des nombres rationnels –, la structure du « groupe des unités » (ou : groupe des inversibles) de l'anneau de ses entiers algébriques. Il établit que ce groupe est isomorphe au produit d'un groupe cyclique fini et d'un groupe abélien libre de rang où r désigne le nombre de morphismes de K dans R et r le nombre de paires de morphismes conjugués de K dans C à valeurs non toutes réelles.
Discrete valuationIn mathematics, a discrete valuation is an integer valuation on a field K; that is, a function: satisfying the conditions: for all . Note that often the trivial valuation which takes on only the values is explicitly excluded. A field with a non-trivial discrete valuation is called a discrete valuation field. To every field with discrete valuation we can associate the subring of , which is a discrete valuation ring. Conversely, the valuation on a discrete valuation ring can be extended in a unique way to a discrete valuation on the quotient field ; the associated discrete valuation ring is just .
Norme (théorie des corps)En théorie des corps (commutatifs), la norme d'un élément α d'une extension finie L d'un corps K est le déterminant de l'endomorphisme linéaire du K-espace vectoriel L qui, à x, associe αx. C'est un homomorphisme multiplicatif. La notion est utilisée en théorie de Galois et en théorie algébrique des nombres. En arithmétique, elle intervient de façon cruciale dans la théorie des corps de classes : les sous-extensions abéliennes d'une extension donnée sont essentiellement en correspondance avec des groupes de normes, c'est-à-dire l'image dans K, par la norme, de certains groupes de L.
Irreducible elementIn algebra, an irreducible element of an integral domain is a non-zero element that is not invertible (that is, is not a unit), and is not the product of two non-invertible elements. The irreducible elements are the terminal elements of a factorization process; that is, they are the factors that cannot be further factorized. The irreducible factors of an element are uniquely defined, up to the multiplication by a unit, if the integral domain is a unique factorization domain.
Division d'un polynômeEn algèbre, l'anneau K[X] des polynômes à une indéterminée X et à coefficients dans un corps commutatif K, comme celui des nombres rationnels, réels ou complexes, dispose d'une division euclidienne, qui ressemble formellement à celle des nombres entiers. Si A et B sont deux polynômes de K[X], avec B non nul, il existe un unique couple (Q, R) de polynômes de K[X] tel que : Ici l'expression deg S, si S désigne un polynôme, signifie le degré de S.