Séances de cours associées (368)
Réseaux neuronaux : apprentissage multicouche
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond, y compris la propagation arrière et les architectures réseau comme LeNet, AlexNet et VGG-16.
Réseaux neuronaux multicouches: Deep Learning
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond.
Modèles génériques : auto-attention et transformateurs
Couvre les modèles générateurs en mettant l'accent sur l'auto-attention et les transformateurs, en discutant des méthodes d'échantillonnage et des moyens empiriques.
Régression logistique : fonctions de coût et optimisation
Explore la régression logistique, les fonctions de coût, la descente en gradient et la modélisation de probabilité à l'aide de la fonction sigmoïde logistique.
Analyse de régression : Désengagement des données
Couvre l'analyse de régression pour les données de désassemblage à l'aide de la modélisation de régression linéaire, des transformations, des interprétations des coefficients et des modèles linéaires généralisés.
Apprentissage automatique pour les systèmes à échelle atomique
Explore l'application de l'apprentissage automatique aux systèmes à l'échelle atomique, en mettant l'accent sur la symétrie dans la cartographie des caractéristiques et la construction de descripteurs invariants en rotation.
Apprentissage automatique: Bases de la modélisation des matériaux à base de données
Couvre la réduction de dimensionnalité et la régression linéaire dans la modélisation des matériaux axée sur les données.
Les moindres carrés récursifs
Explique l'algorithme Recursive des moindres carrés pour la mise à jour des estimations des paramètres dans les modèles de régression linéaire.
Régression logistique : prédiction de la végétation
Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.
Analyse de régression linéaire
Introduit une analyse de régression linéaire, couvrant la construction du modèle, les prédicteurs, les coefficients et linterprétation des résultats.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.