Algèbre de Boole (logique)Lalgèbre de Boole, ou calcul booléen, est la partie des mathématiques qui s'intéresse à une approche algébrique de la logique, vue en termes de variables, d'opérateurs et de fonctions sur les variables logiques, ce qui permet d'utiliser des techniques algébriques pour traiter les expressions à deux valeurs du calcul des propositions. Elle fut lancée en 1854 par le mathématicien britannique George Boole. L'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
LinéaritéLe concept de linéarité est utilisé dans le domaine des mathématiques et dans le domaine de la physique, et par extension dans le langage courant. Les premiers exemples de situations où intervient la linéarité sont les situations de proportionnalité constante entre deux variables : le graphe représentant une variable en fonction de l'autre forme alors une ligne droite qui passe par l'origine. Il ne faut cependant pas confondre linéarité et proportionnalité, car la proportionnalité n'est qu'un cas particulier de la linéarité.
Notations infixée, préfixée, polonaise et postfixéeLes notations infixée (ou infixe), préfixée (ou préfixe) et postfixée (ou postfixe) sont des formes d'écritures d'expressions algébriques qui se distinguent par la position relative qu'y prennent les opérateurs et leurs opérandes. Un opérateur est écrit avant ses opérandes en notation préfixée, entre ses opérandes en notation infixée et après ses opérandes en notation postfixée. La notation infixée n'a de sens que pour les opérateurs prenant exactement deux opérandes. C'est la notation la plus courante des opérateurs binaires en mathématiques.
Anneau de BooleUn anneau de Boole (ou Algèbre de Boole), est un anneau unitaire (E, +, •, 0, 1) dans lequel tout élément a vérifie la relation a•a = a. Il découle immédiatement de la définition qu'un anneau de Boole est commutatif et que chaque élément est son propre opposé (en calculant le carré de x + 1, puis celui de x + y). En un sens qui peut être rendu précis, les anneaux de Boole sont les algèbres de Boole présentées autrement.
Conjonction logiqueEn logique, la conjonction est une opération mise en œuvre par le connecteur binaire et. Le connecteur et est donc un opérateur binaire qui lie deux propositions pour en faire une autre. Si on admet chacune des deux propositions, alors on admettra la proposition qui en est la conjonction. En logique mathématique, le connecteur de conjonction est noté soit &, soit ∧. En théorie de la démonstration, plus particulièrement en calcul des séquents, la conjonction est régie par des règles d'introduction et des règles d'élimination.
OpérandeEn mathématiques, dans une expression décrivant une opération, chacun des éléments sur lesquels s'applique l’opération est appelé un opérande. Selon l'arité de l'opérateur utilisé, il peut y avoir ainsi zéro, un ou plusieurs opérandes. En langage de programmation, l'arité de l'opérateur peut dépendre du jeu d'instructions. Un opérande peut être une constante, une simple variable ou une expression faisant intervenir d'autres opérations. Deux opérandes distincts peuvent avoir la même expression et a fortiori la même valeur.
Système binaireLe système binaire (du latin binārĭus, « double ») est le système de numération utilisant la base 2. On nomme couramment bit (de l'anglais binary digit, soit « chiffre binaire ») les chiffres de la numération binaire positionnelle. Un bit peut prendre deux valeurs, notées par convention 0 et 1. Le système binaire est utile pour représenter le fonctionnement de l'électronique numérique utilisée dans les ordinateurs. Il est donc utilisé par les langages de programmation de bas niveau.
Table de véritéUne table de vérité (parfois appelée fonction de vérité) est une table mathématique utilisée en logique classique — en particulier le calcul propositionnel classique et l'algèbre de Boole — pour représenter de manière sémantique des expressions logiques et calculer la valeur de leur fonction relativement à chacun de leurs arguments fonctionnels (chaque combinaison de valeur assumée par leurs variables logiques).
Opération bit à bitEn logique, une opération bit à bit est un calcul manipulant les données directement au niveau des bits, selon une arithmétique booléenne. Elles sont utiles dès qu'il s'agit de manipuler les données à bas niveau : codages, couches basses du réseau (par exemple TCP/IP), cryptographie, où elles permettent également les opérations sur les corps finis de caractéristique 2. Les opérations bit à bit courantes comprennent des opérations logiques bit par bit et des opérations de décalage des bits, vers la droite ou vers la gauche.
Disjonction logiqueLa disjonction logique, ou disjonction non exclusive, de deux assertions est une façon d'affirmer qu'au moins une de ces deux assertions est vraie (la première, la deuxième, ou les deux). Dans le langage logique ou mathématique, et dans les domaines techniques qui l'emploient, elle se traduit par le OU logique, un opérateur logique dans le calcul des propositions. La proposition obtenue en reliant deux propositions par cet opérateur s'appelle également leur disjonction ou leur somme logique.