Nombre eulérienEn mathématiques, et plus précisément en analyse combinatoire, le nombre eulérien A(n, k), est le nombre de permutations des entiers de 1 à n pour lesquelles exactement k éléments sont plus grands que l'élément précédent (permutations avec k « montées » (). Les nombres eulériens sont les coefficients des polynômes eulériens : Ces polynômes apparaissent au numérateur d'expressions liées à la fonction génératrice de la suite . Ces nombres forment la .
Recherche exhaustiveLa recherche exhaustive ou recherche par force brute est une méthode algorithmique qui consiste principalement à essayer toutes les solutions possibles. Par exemple pour trouver le maximum d'un certain ensemble de valeurs, on consulte toutes les valeurs. En cryptanalyse on parle d'attaque par force brute, ou par recherche exhaustive pour les attaques utilisant cette méthode. Le principe de cet algorithme est d'essayer toutes les possibilités dans un intervalle. Un exemple courant est l'attaque par force brute des mots de passe.
Produit de WallisEn mathématiques, le produit de Wallis, ou formule de Wallis, est une expression de la moitié de la constante π sous la forme d'un produit infini, énoncée en 1656 par John Wallis, dans son ouvrage Arithmetica infinitorum. Ce produit peut s'écrire sous la forme : soit, de façon plus condensée : ou encore : Une formulation équivalente est : On peut démontrer cette égalité à l'aide des intégrales de Wallis.
Fonction logarithmiquement convexeEn mathématiques, et plus particulièrement en analyse, une fonction à valeurs strictement positives est dite logarithmiquement convexe si sa composée par le logarithme népérien est convexe. Soient un intervalle réel et . On dit que est logarithmiquement convexe si, pour tous points de et tout , on a l'inégalité suivante : soit encore, en prenant l'exponentielle : De façon équivalente, est logarithmiquement convexe si pour tout intervalle non trivial , les réels déterminés par vérifient : Pour tout a > 0, l'exponentielle de base a est logarithmiquement convexe.
LīlāvatīLīlāvatī is Indian mathematician Bhāskara II's treatise on mathematics, written in 1150 AD. It is the first volume of his main work, the Siddhānta Shiromani, alongside the Bijaganita, the Grahaganita and the Golādhyāya. His book on arithmetic is the source of interesting legends that assert that it was written for his daughter, Lilavati. Lilavati was Bhaskara II's daughter. Bhaskara II studied Lilavati's horoscope and predicted that she would remain both childless and unmarried.
Suite arithmétiqueEn mathématiques, une suite arithmétique est une suite (le plus souvent une suite de réels) dans laquelle chaque terme permet de déduire le suivant en lui ajoutant une constante appelée raison. Cette définition peut s'écrire sous la forme d'une relation de récurrence, pour chaque indice n : Cette relation est caractéristique de la progression arithmétique ou croissance linéaire. Elle décrit bien les phénomènes dont la variation est constante au cours du temps, comme l'évolution d'un compte bancaire à intérêts simples.
Densité asymptotiqueEn mathématiques, et plus particulièrement en théorie des nombres, la densité asymptotique (ou densité naturelle, ou densité arithmétique) est une façon de mesurer la « taille » de certains sous-ensembles d'entiers naturels. La densité d'un ensemble peut être vue comme une approximation de la probabilité qu'un entier tiré au hasard dans un intervalle arbitrairement grand appartienne à ; son étude fait partie de la théorie analytique des nombres.
Calcul du volume de l'hypersphèreLa démonstration mathématique suivante pour le calcul du volume de l'hypersphère dépend des définitions précises de la sphère et de la boule. Le volume intérieur d'une sphère est le volume de la boule délimitée par la sphère. Nous intégrerons en coordonnées cartésiennes orthonormales dans l'espace euclidien. Notons le volume de la boule de rayon r en dimension n ≥ 1. Alors : parce que c'est la longueur d'un segment deux fois plus long que le rayon, i.e. La sphère de dimension 0 qui borde cette boule est constituée des deux points r et –r.
Théorème de WilsonEn mathématiques, plus précisément en arithmétique élémentaire, le théorème de Wilson énonce qu'un entier p plus grand que 1 est premier si et seulement si la factorielle de p – 1 est congrue à –1 modulo p. Cette caractérisation des nombres premiers est assez anecdotique et ne constitue pas un test de primalité efficace. Son principal intérêt réside dans son histoire et dans la relative simplicité de son énoncé et de ses démonstrations. Ici, le symbole « ! » désigne la fonction factorielle et le symbole « .
Identités de NewtonEn mathématiques, et plus particulièrement en algèbre, les identités de Newton (connues également sous le nom de formules de Newton-Girard) sont des relations entre deux types de polynômes symétriques, les polynômes symétriques élémentaires, et les sommes de Newton, c'est-à-dire les sommes de puissances des indéterminées. Évaluées aux racines d'un polynôme P à une variable, ces identités permettent d'exprimer les sommes des k-ièmes puissances de toutes les racines de P (comptées avec leur multiplicité) en fonction des coefficients de P, sans qu'il soit nécessaire de déterminer ces racines.