Nombre ordinalvignette|Spirale représentant les nombres ordinaux inférieurs à ωω. En mathématiques, on appelle nombre ordinal un objet permettant de caractériser le type d'ordre d'un ensemble bien ordonné quelconque, tout comme en linguistique, les mots premier, deuxième, troisième, quatrième, etc. s'appellent des adjectifs numéraux ordinaux, et servent à préciser le rang d'un objet dans une collection, ou l'ordre d'un événement dans une succession.
Richard DedekindJulius Wilhelm Richard Dedekind (né le à Brunswick et mort le dans la même ville) est un mathématicien allemand et un proche disciple de Ernst Kummer en arithmétique. Pionnier de l'axiomatisation de l'arithmétique, il a proposé une définition axiomatique de l'ensemble des nombres entiers ainsi qu’une construction rigoureuse des nombres réels à partir des nombres rationnels (méthode des « coupures » de Dedekind).
Axiome du choix dénombrablevignette|Chaque ensemble dans la suite dénombrable d'ensembles (Si) = S1, S2, S3, ... contient un élément différent de zéro, et éventuellement une infinité (ou même une infinité indénombrable) d'éléments. L'axiome du choix dénombrable nous permet de sélectionner arbitrairement un seul élément de chaque ensemble, formant une suite correspondante d'éléments (xi) = x1, x2, x3, ...
ÉquipotenceEn mathématiques, l’équipotence est une relation entre ensembles, selon laquelle deux ensembles sont équivalents lorsqu'il existe une bijection entre eux. Cette notion permet de définir la cardinalité, c'est-à-dire le nombre d'éléments d'un ensemble, qu'il soit fini ou infini. La subpotence est une relation plus faible, satisfaite lorsqu'il existe une injection entre deux ensembles. Elle permet de définir une comparaison de taille entre les ensembles, sans présupposer la construction des nombres cardinaux.
Infinithumb|∞ : le symbole infini. Le mot « infini » (-e, -s) est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille. Il vient du latin infīnītus, dérivé de fīnītus « limité » (avec in-, préfixe négatif), issu lui-même du verbe fīnĭo, fīnīre (« délimiter », mais aussi : « préciser », « déterminer », et intransitivement « finir »), et du nom fīnis (souvent au pluriel, fīnes : « bornes, limites d'un champ », « frontières d'un pays ») ; il signifie donc, littéralement « qui est sans borne », mais aussi « indéterminé » et « indéfini ».
Ensemble infiniEn mathématiques, plus précisément en théorie des ensembles, un ensemble infini est un ensemble qui n'est pas fini, c'est-à-dire qu'il n'y a aucun moyen de « compter » les éléments de cet ensemble à l'aide d'un ensemble borné d'entiers. Un ensemble en bijection avec un ensemble infini est donc infini. Tout ensemble contenant un ensemble dénombrable est infini. Dans la théorie de Zermelo (Z), l'axiome de l'infini permet de construire l'ensemble N des entiers naturels, qui est alors un ensemble infini.