Explore la décomposition primaire et les schémas en géométrie algébrique, soulignant l'importance de travailler sur les champs non-algébriques fermés et le concept de fibres de morphismes.
Couvre le concept de localisation et d'idéaux en anneaux, en se concentrant sur des idéaux étendus et contractés, des extensions intégrales et des équations sonores.
Explore les anneaux de Dedekind, les idéaux fractionnaires, les propriétés intégralement fermées, la factorisation idéale principale et la structure des idéaux fractionnaires en tant que groupe commutatif.
Discute des domaines intégraux, des groupes abéliens, de l'inversibilité, des diviseurs zéro, des éléments premiers et de la classification des groupes.
Explore les fondamentaux de la théorie de Galois, y compris les éléments séparables, les champs de décomposition et les groupes de Galois, en soulignant l'importance des extensions de degrés finis et de la structure des extensions de Galois.