Mathématiquesthumb|upright|Raisonnement mathématique sur un tableau. Les mathématiques (ou la mathématique) sont un ensemble de connaissances abstraites résultant de raisonnements logiques appliqués à des objets divers tels que les ensembles mathématiques, les nombres, les formes, les structures, les transformations ; ainsi qu'aux relations et opérations mathématiques qui existent entre ces objets. Elles sont aussi le domaine de recherche développant ces connaissances, ainsi que la discipline qui les enseigne.
Entier naturelEn mathématiques, un entier naturel est un nombre permettant fondamentalement de compter des objets considérés comme des unités équivalentes : un jeton, deux jetons... une carte, deux cartes, trois cartes... Un tel nombre entier peut s'écrire avec une suite finie de chiffres en notation décimale positionnelle (sans signe et sans virgule). L’étude des entiers naturels est l’objet de l’arithmétique, branche des mathématiques, constituée dès l'Antiquité grecque.
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Logique mathématiqueLa logique mathématique ou métamathématique est une discipline des mathématiques introduite à la fin du , qui s'est donné comme objet l'étude des mathématiques en tant que langage. Les objets fondamentaux de la logique mathématique sont les formules représentant les énoncés mathématiques, les dérivations ou démonstrations formelles représentant les raisonnements mathématiques et les sémantiques ou modèles ou interprétations dans des structures qui donnent un « sens » mathématique générique aux formules (et parfois même aux démonstrations) comme certains invariants : par exemple l'interprétation des formules du calcul des prédicats permet de leur affecter une valeur de vérité'.
Système axiomatiqueEn mathématiques, un système axiomatique est un ensemble d'axiomes dont certains ou tous les axiomes peuvent être utilisés logiquement pour dériver des théorèmes. Une théorie consiste en un système axiomatique et tous ses théorèmes dérivés. Un système axiomatique complet est un type particulier de système formel. Une théorie formelle signifie généralement un système axiomatique, par exemple formulé dans la théorie des modèles. Une démonstration formelle est une interprétation complète d'une démonstration mathématique dans un système formel.
Richard DedekindJulius Wilhelm Richard Dedekind (né le à Brunswick et mort le dans la même ville) est un mathématicien allemand et un proche disciple de Ernst Kummer en arithmétique. Pionnier de l'axiomatisation de l'arithmétique, il a proposé une définition axiomatique de l'ensemble des nombres entiers ainsi qu’une construction rigoureuse des nombres réels à partir des nombres rationnels (méthode des « coupures » de Dedekind).
Axiomes de Peanovignette|Giuseppe Peano En mathématiques, les axiomes de Peano sont des axiomes pour l'arithmétique proposés initialement à la fin du par Giuseppe Peano, et qui connaissent aujourd'hui plusieurs présentations qui ne sont pas équivalentes, suivant la théorie sous-jacente, théorie des ensembles, logique du second ordre ou d'ordre supérieur, ou logique du premier ordre. Richard Dedekind avait proposé une formalisation assez proche, sous une forme non axiomatique.
Gottlob FregeGottlob Frege (), de son nom complet Friedrich Ludwig Gottlob Frege, né le à Wismar et mort le à Bad Kleinen, est un mathématicien, logicien et philosophe allemand, créateur de la logique moderne et plus précisément du calcul propositionnel moderne : le calcul des prédicats. Il est en outre considéré comme l'un des plus importants représentants du logicisme. C'est à la suite de son ouvrage Les Fondements de l'arithmétique, où il tente de dériver l'arithmétique de la logique, que Russell lui a fait parvenir le paradoxe qui porte son nom.
Principia MathematicaLes Principia Mathematica sont une œuvre en trois volumes d'Alfred North Whitehead et Bertrand Russell, publiés en 1910-1913. Cette œuvre a pour sujet les fondements des mathématiques. Avec en particulier l'idéographie de Gottlob Frege, c'est un ouvrage fondamental, dans la mesure où il participe de façon décisive à la naissance de la logique moderne. Entre 1898 et 1903, Whitehead travaille à l'édition d'un deuxième volume de son .
Analyse (mathématiques)L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes.