Concepts associés (35)
Courbure de Gauss
vignette|De gauche à droite : une surface de courbure de Gauss négative (un hyperboloïde), une surface de courbure nulle (un cylindre), et une surface de courbure positive (une sphère). vignette|Certains points du tore sont de courbure positive (points elliptiques) et d'autres de courbure négative (points hyperboliques) La courbure de Gauss, parfois aussi appelée courbure totale, d'une surface paramétrée X en X(P) est le produit des courbures principales. De manière équivalente, la courbure de Gauss est le déterminant de l'endomorphisme de Weingarten.
Elwin Bruno Christoffel
Elwin Bruno Christoffel (1829-1900) est un mathématicien et physicien allemand. Il étudie à l'université Humboldt de Berlin, notamment avec Dirichlet. Il soutient une thèse sur la propagation de l'électricité dans les corps homogènes en 1856. En 1859, Christoffel devient Privat-docent à l'université de Berlin. En 1862, il est nommé à l'École polytechnique fédérale de Zurich où il occupe la chaire laissée vacante par le départ de Dedekind.
Notation en indice abstrait
La notation en indice abstrait est un système de notation présentant des similarités avec la convention de sommation d'Einstein et destinée comme cette dernière à l'écriture du calcul tensoriel. Cette notation, due au mathématicien Roger Penrose, a pour but l'écriture pratique d'équations dans lesquelles interviennent des tenseurs ou des champs tensoriels. Il s'agit à la fois : de bénéficier de la simplicité d'écriture permise par la convention de sommation d'Einstein ; de ne pas dépendre contrairement à la convention d'Einstein d'un choix de base particulier (et donc arbitraire).
Curvature of Riemannian manifolds
In mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension greater than 2 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous way to define curvature for these manifolds, now known as the Riemann curvature tensor. Similar notions have found applications everywhere in differential geometry of surfaces and other objects. The curvature of a pseudo-Riemannian manifold can be expressed in the same way with only slight modifications.
Seconde forme fondamentale
La seconde forme fondamentale est une forme quadratique caractérisant certains aspects de la géométrie différentielle des surfaces. Ce concept est d'abord apparu dans l'étude des surfaces réglées avant de prendre toute sa généralité dans le cadre de la géométrie riemannienne. Alors que la première forme fondamentale décrit la « géométrie interne » d'une surface (c'est-à-dire les propriétés qui peuvent être déterminées depuis la surface elle-même), la seconde forme fondamentale dépend de la situation de la surface dans l'espace.
Tullio Levi-Civita
Tullio Levi-Civita ( à Padoue, Italie – à Rome) est un mathématicien italien. Il est connu principalement pour son travail sur le calcul tensoriel et ses applications en théorie de la relativité. Il fut l'assistant de Gregorio Ricci-Curbastro, avec qui il inventa le calcul tensoriel. Ses travaux incluent aussi des articles fondamentaux en mécanique céleste (notamment sur le problème des trois corps) et l'hydrodynamique. Né à Padoue, Levi-Civita était le fils de Giacomo Levi-Civita, un avocat qui fut sénateur.
Dérivée directionnelle
En analyse mathématique, la notion de dérivée directionnelle permet de quantifier la variation locale d'une fonction dépendant de plusieurs variables, en un point donné et le long d'une direction donnée dans l'espace de ces variables. Dans la version la plus simple, la dérivée directionnelle généralise la notion de dérivées partielles, dans le sens où l'on retrouve ces dernières en prenant comme directions de dérivation les axes de coordonnées. Le concept de dérivée directionnelle est fondamental en analyse.
Ricci decomposition
In the mathematical fields of Riemannian and pseudo-Riemannian geometry, the Ricci decomposition is a way of breaking up the Riemann curvature tensor of a Riemannian or pseudo-Riemannian manifold into pieces with special algebraic properties. This decomposition is of fundamental importance in Riemannian and pseudo-Riemannian geometry. Let (M,g) be a Riemannian or pseudo-Riemannian n-manifold. Consider its Riemann curvature, as a (0,4)-tensor field.
Theorema egregium
En mathématiques, et plus précisément en géométrie, le theorema egregium (« théorème remarquable » en latin) est un important théorème énoncé par Carl Friedrich Gauss et portant sur la courbure des surfaces. Il énonce que celle-ci peut être entièrement déterminée à partir de la métrique locale de la surface, c'est-à-dire qu'elle ne dépend pas de la manière dont la surface peut être plongée dans l'espace tridimensionnel. Considérons une surface de l'espace euclidien R.
Constant curvature
In mathematics, constant curvature is a concept from differential geometry. Here, curvature refers to the sectional curvature of a space (more precisely a manifold) and is a single number determining its local geometry. The sectional curvature is said to be constant if it has the same value at every point and for every two-dimensional tangent plane at that point. For example, a sphere is a surface of constant positive curvature.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.