Baire spaceIn mathematics, a topological space is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the , compact Hausdorff spaces and complete metric spaces are examples of Baire spaces. The Baire category theorem combined with the properties of Baire spaces has numerous applications in topology, geometry, analysis, in particular functional analysis. For more motivation and applications, see the article .
Espace complètement régulierEn mathématiques, un espace complètement régulier (ou de Tikhonov) est un espace topologique vérifiant une propriété de séparation plus forte que la séparation usuelle et même que la propriété d'être régulier. Un espace topologique X vérifie la propriété de séparation T si pour tout point x de X et pour tout fermé F de X ne contenant pas x, il existe une application continue de X dans le segment [0, 1] valant 0 en x et 1 sur F (on dit alors que cette application sépare le point du fermé).
Partie denseEn topologie, une partie dense d'un espace topologique est un sous-ensemble permettant d'approcher tous les éléments de l'espace englobant. La notion s'oppose ainsi à celle de partie nulle part dense. La densité d'une partie permet parfois d'étendre la démonstration d'une propriété ou la définition d'une application par continuité. Soient X un espace topologique et A une partie de X.
Ensemble maigreEn topologie, dans le contexte des espaces de Baire, un ensemble maigre (on dit aussi de première catégorie) est une partie d'un espace de Baire qui, en un sens technique, peut être considérée comme de taille infime. Un ensemble comaigre est le complémentaire d'un ensemble maigre. Une partie qui n'est pas maigre est dite de deuxième catégorie. Un sous-ensemble d'un espace topologique E est dit maigre lorsqu'il est contenu dans une réunion dénombrable de fermés de E qui sont tous d'intérieur vide.
Espace uniformeEn mathématiques, la notion d'espace uniforme, introduite en 1937 par André Weil, est une généralisation de celle d'espace métrique. Une structure uniforme est une structure qui permet de définir la continuité uniforme. On peut y parvenir de deux manières différentes, l'une en généralisant la notion de distance, l'autre avec une axiomatique proche de celle des espaces topologiques. On montre que ces deux approches sont équivalentes. Un écart sur un ensemble est une application [0, +∞] telle que pour tout : (symétrie); (inégalité triangulaire).
Dimension topologiqueEn mathématiques, une dimension topologique est une notion destinée à étendre à des espaces topologiques la notion algébrique de dimension d'un espace vectoriel. C'est un invariant topologique, entier ou infini. Les trois principales dimensions topologiques sont les deux dimensions inductives ind et Ind et la dimension de recouvrement dim. Les dimensions Ind et dim coïncident pour tout espace métrisable ; si l'espace est de plus séparable, ses trois dimensions topologiques sont égales.
Espace localement connexeEn mathématiques, plus précisément en topologie, un espace localement connexe est un espace topologique pouvant être décrit à l’aide de ses ouverts connexes. En topologie, on dit qu’un espace est connexe lorsqu’il est fait « d’une seule pièce ». La question naturelle qui suit est de savoir si tout espace topologique peut être décrit comme la réunion disjointe (dans la catégorie des espaces topologiques) de ses composantes connexes ; en d’autres termes, peut-on considérer que lorsqu’on connait toutes les « pièces » d’un espace topologique, on sait tout de cet espace ? Une condition nécessaire et suffisante pour cela est que toutes les composantes connexes soient ouvertes.
Groupe d'homotopieEn mathématiques, et plus particulièrement en topologie algébrique, les groupes d'homotopie sont des invariants qui généralisent la notion de groupe fondamental aux dimensions supérieures. Il y a plusieurs définitions équivalentes possibles. Première définition Soit X un espace topologique et un point de X. Soit la boule unité de dimension i de l'espace euclidien . Son bord est la sphère unité de dimension . Le i-ième groupe d'homotopie supérieur est l'ensemble des classes d'homotopie relative à d'applications continues telle que : .
Sober spaceIn mathematics, a sober space is a topological space X such that every (nonempty) irreducible closed subset of X is the closure of exactly one point of X: that is, every irreducible closed subset has a unique generic point. Sober spaces have a variety of cryptomorphic definitions, which are documented in this section. All except the definition in terms of nets are described in. In each case below, replacing "unique" with "at most one" gives an equivalent formulation of the T0 axiom.
Point fixeEn mathématiques, pour une application f d'un ensemble E dans lui-même, un élément x de E est un point fixe de f si f(x) = x. Exemples : dans le plan, la symétrie par rapport à un point A admet un unique point fixe : A ; l'application inverse (définie sur l'ensemble des réels non nuls) admet deux points fixes : –1 et 1, solutions de l'équation équivalente à l'équation . Graphiquement, les points fixes d'une fonction f (d'une variable réelle, à valeurs réelles) sont les points d'intersection de la droite d'équation y = x avec la courbe d'équation y = f(x).