Sober spaceIn mathematics, a sober space is a topological space X such that every (nonempty) irreducible closed subset of X is the closure of exactly one point of X: that is, every irreducible closed subset has a unique generic point. Sober spaces have a variety of cryptomorphic definitions, which are documented in this section. All except the definition in terms of nets are described in. In each case below, replacing "unique" with "at most one" gives an equivalent formulation of the T0 axiom.
Espace à base dénombrableEn mathématiques, plus précisément en topologie, un espace est dit à base dénombrable si sa topologie admet une base dénombrable. La plupart des espaces usuels de l'analyse et beaucoup d'espaces en analyse fonctionnelle sont à base dénombrable. Tout espace à base dénombrable est à la fois séparable, à bases dénombrables de voisinages et de Lindelöf (en particulier, pour un espace à base dénombrable, les trois propriétés quasi-compact/dénombrablement compact/séquentiellement compact sont équivalentes).
Nombre rationnelUn nombre rationnel est, en mathématiques, un nombre qui peut s'exprimer comme le quotient de deux entiers relatifs. On peut ainsi écrire les nombres rationnels sous forme de fractions notées où , le numérateur, est un entier relatif et , le dénominateur, est un entier relatif non nul. Un nombre entier est un nombre rationnel : il peut s'exprimer sous la forme . Chaque nombre rationnel peut s'écrire d'une infinité de manières différentes sous forme de fraction, par exemple ...
Espace T1En mathématiques, un espace accessible (ou espace T, ou de Fréchet) est un cas particulier d'espace topologique. Il s'agit d'un exemple d'axiome de séparation. Un espace topologique E est T si pour tout couple (x, y) d'éléments de E distincts, il existe un ouvert contenant x et pas y. Soit E un espace topologique.
Point fixeEn mathématiques, pour une application f d'un ensemble E dans lui-même, un élément x de E est un point fixe de f si f(x) = x. Exemples : dans le plan, la symétrie par rapport à un point A admet un unique point fixe : A ; l'application inverse (définie sur l'ensemble des réels non nuls) admet deux points fixes : –1 et 1, solutions de l'équation équivalente à l'équation . Graphiquement, les points fixes d'une fonction f (d'une variable réelle, à valeurs réelles) sont les points d'intersection de la droite d'équation y = x avec la courbe d'équation y = f(x).
Ouvert-ferméEn topologie, un ouvert-fermé est un sous-ensemble d'un espace topologique X qui est à la fois ouvert et fermé. Il peut sembler contre-intuitif que de tels ensembles existent, puisqu'au sens usuel, « ouvert » et « fermé » sont antonymes. Mais au sens mathématique, ces deux notions ne sont pas mutuellement exclusives : une partie de X est dite fermée si son complémentaire dans X est ouvert, donc un ouvert-fermé est simplement un ouvert dont le complémentaire est aussi ouvert.
Espace séparableEn mathématiques, et plus précisément en topologie, un espace séparable est un espace topologique contenant un sous-ensemble dense et au plus dénombrable, c'est-à-dire contenant un ensemble fini ou dénombrable de points dont l'adhérence est égale à l'espace topologique tout entier. espace à base dénombrable Tout espace à base dénombrable est séparable. La réciproque est fausse, mais : Tout espace pseudométrisable séparable est à base dénombrable.Beaucoup d'espaces usuels sont de ce type.
Connexité (mathématiques)La connexité est une notion de topologie qui formalise le concept d'« objet d'un seul tenant ». Un objet est dit connexe s'il est fait d'un seul « morceau ». Dans le cas contraire, chacun des morceaux est une composante connexe de l'objet étudié. Soit un espace topologique E. Les quatre propositions suivantes sont équivalentes : E n'est pas la réunion de deux ouverts non vides disjoints ; E n'est pas la réunion de deux fermés non vides disjoints ; les seuls ouverts-fermés de E sont ∅ et E ; toute application continue de E dans un ensemble à deux éléments muni de la topologie discrète est constante.
Groupe topologiqueEn mathématiques, un groupe topologique est un groupe muni d'une topologie compatible avec la structure de groupe, c'est-à-dire telle que la loi de composition interne du groupe et le passage à l'inverse sont deux applications continues. L'étude des groupes topologiques mêle donc des raisonnements d'algèbre et de topologie. La structure de groupe topologique est une notion essentielle en topologie algébrique. Les deux axiomes de la définition peuvent être remplacés par un seul : Un morphisme de groupes topologiques est un morphisme de groupes continu.
Suite généraliséeEn mathématiques, la notion de suite généralisée, ou suite de Moore-Smith, ou filet, étend celle de suite, en indexant les éléments d'une famille par des éléments d'un ensemble ordonné filtrant qui n'est plus nécessairement celui des entiers naturels. Pour tout ensemble X, une suite généralisée d'éléments de X est une famille d'éléments de X indexée par un ensemble ordonné filtrant A. Par filtrant (à droite), on entend que toute paire dans A possède un majorant dans A. Soit un filet dans un ensemble E et, pour tout , .