Application linéaireEn mathématiques, une application linéaire (aussi appelée opérateur linéaire ou transformation linéaire) est une application entre deux espaces vectoriels qui respecte l'addition des vecteurs et la multiplication scalaire, et préserve ainsi plus généralement les combinaisons linéaires. L’expression peut s’utiliser aussi pour un morphisme entre deux modules sur un anneau, avec une présentation semblable en dehors des notions de base et de dimension. Cette notion étend celle de fonction linéaire en analyse réelle à des espaces vectoriels plus généraux.
Endomorphismevignette|Projection orthogonale sur une droite. Ceci est un exemple d'endomorphisme qui n'est pas un automorphisme. En mathématiques, un endomorphisme est un morphisme (ou homomorphisme) d'un objet mathématique dans lui-même. Ainsi, par exemple, un endomorphisme d'espace vectoriel E est une application linéaire f : E → E, et un endomorphisme de groupe G est un morphisme de groupes f : G → G, etc. En général, nous pouvons parler d'endomorphisme de n'importe quelle catégorie.
Module libreEn algèbre, un module libre est un module M qui possède une base B, c'est-à-dire un sous-ensemble de M tel que tout élément de M s'écrive de façon unique comme combinaison linéaire (finie) d'éléments de B. Une base de M est une partie B de M qui est à la fois : génératrice pour M, c'est-à-dire que tout élément de M est combinaison linéaire d'éléments de B ; libre, c'est-à-dire que pour toutes familles finies (ei)1≤i≤n d'éléments de B deux à deux distincts et (ai)1≤i≤n d'éléments de l'anneau sous-jacent telles que a1e1 + .
ConoyauEn mathématiques, le conoyau d'un morphisme f : X → Y (par exemple un homomorphisme entre groupes ou bien un opérateur borné entre espaces de Hilbert) est la donnée d'un objet Q et d'un morphisme q : Y → Q tel que le morphisme composé soit le morphisme nul, et de plus Q est, en un certain sens, le plus "gros" objet possédant cette propriété. Souvent l'application q est sous-entendue, et Q est lui-même appelé conoyau de f. Les conoyaux sont les duaux des noyaux des catégories, d'où le nom.
Injection (mathématiques)Une application f est dite injective ou est une injection si tout élément de son ensemble d'arrivée a au plus un antécédent par f, ce qui revient à dire que deux éléments distincts de son ensemble de départ ne peuvent pas avoir la même par f. Lorsque les ensembles de départ et d'arrivée de f sont tous les deux égaux à la droite réelle R, f est injective si et seulement si son graphe intersecte toute droite horizontale en au plus un point. Si une application injective est aussi surjective, elle est dite bijective.
Théorie des catégoriesLa théorie des catégories est l'étude des structures mathématiques et de leurs relations. Ce domaine est né du constat de l'abondance de caractéristiques partagées par diverses classes liées à des structures mathématiques. Les catégories sont utilisées dans la plupart des branches mathématiques et dans certains secteurs de l'informatique théorique et en mathématiques de la physique. Elles forment une notion unificatrice.
Sous-groupe normalEn théorie des groupes, un sous-groupe normal (également appelé sous-groupe distingué ou sous-groupe invariantLien web|langue=fr|titre=Introduction à la théorie des groupes et de leurs représentations|auteur=Jean-Bernard Zuber|url=) H d'un groupe G est un sous-groupe globalement stable par l'action de G sur lui-même par conjugaison. Les sous-groupes normaux interviennent naturellement dans la définition du quotient d'un groupe. Les sous-groupes normaux de G sont exactement les noyaux des morphismes définis sur G.
Morphisme d'anneauxUn morphisme d'anneaux est une application entre deux anneaux (unitaires) A et B, compatible avec les lois de ces anneaux et qui envoie le neutre multiplicatif de A sur le neutre multiplicatif de B. Un morphisme d'anneaux est une application f entre deux anneaux (unitaires) A et B qui vérifie les trois propriétés suivantes : Pour tous a, b dans A : f(a + b) = f(a) + f(b) f(a ∙ b) = f(a) ∙ f(b) f(1A) = 1B.
Variété (algèbre)En algèbre universelle, une variété est une classe équationnelle, c'est-à-dire une classe K non vide de structures algébriques de même signature qui satisfont un ensemble d'identités (appelé axiomatisation équationnelle de la classe). Un monoïde est un ensemble E muni d'une loi interne * associative et d'un élément neutre. Ainsi, pour tous éléments x, y, z d'un monoïde, les équations suivantes sont vérifiées : (x * y) * z = x * (y * z) x * e = x e * x = x De plus, ces trois équations caractérisent la notion de monoïde.
Application (mathématiques)thumb|Diagramme représentatif d'une application entre deux ensembles. En mathématiques, une application est une relation entre deux ensembles pour laquelle chaque élément du premier (appelé ensemble de départ ou source) est relié à un unique élément du second (l’ensemble d'arrivée ou but). Le terme est concurrencé par celui de fonction, bien que celui-ci désigne parfois plus spécifiquement les applications dont le but est un ensemble de nombres et parfois, au contraire, englobe plus largement les relations pour lesquelles chaque élément de l'ensemble de départ est relié à au plus un élément de l'ensemble d'arrivée.