Concept

Décomposition d'une matrice en éléments propres

Concepts associés (21)
LAPACK
LAPACK (pour Linear Algebra Package) est une bibliothèque logicielle écrite en Fortran, dédiée comme son nom l'indique à l'algèbre linéaire numérique. Elle a été développée initialement par l'université du Tennessee, le Courant Institute of Mathematical Sciences, le Numerical Algorithms Group, l'université Rice et les laboratoires d'Argonne et Oak Ridge. Cette bibliothèque fournit notamment des fonctions pour la résolution de systèmes d'équations linéaires, le calcul de valeurs propres et les décompositions de matrices (LU, QR, SVD, Cholesky).
Canonical form
In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and allows it to be identified in a unique way. The distinction between "canonical" and "normal" forms varies from subfield to subfield. In most fields, a canonical form specifies a unique representation for every object, while a normal form simply specifies its form, without the requirement of uniqueness.
Espace de Hilbert
vignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Analyse numérique
L’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Generalized eigenvector
In linear algebra, a generalized eigenvector of an matrix is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector. Let be an -dimensional vector space and let be the matrix representation of a linear map from to with respect to some ordered basis. There may not always exist a full set of linearly independent eigenvectors of that form a complete basis for . That is, the matrix may not be diagonalizable.
GMRES
En mathématique, la généralisation de la méthode de minimisation du résidu (ou GMRES, pour Generalized minimal residual) est une méthode itérative pour déterminer une solution numérique d'un système d'équations linéaires. La méthode donne une approximation de la solution par un vecteur appartenant à un sous-espace de Krylov avec un résidu minimal. Pour déterminer ce vecteur, on utilise la . La méthode GMRES fut développée par Yousef Saad et Martin H. Schultz en 1986.
Théorème spectral
En mathématiques, et plus particulièrement en algèbre linéaire et en analyse fonctionnelle, on désigne par théorème spectral plusieurs énoncés affirmant, pour certains endomorphismes, l'existence de décompositions privilégiées, utilisant en particulier l'existence de sous-espaces propres. vignette|Une illustration du théorème spectral dans le cas fini : un ellipsoïde possède (en général) trois axes de symétrie orthogonaux (notés ici x, y et z).
Exponentielle d'une matrice
En mathématiques, et plus particulièrement en analyse, l'exponentielle d'une matrice est une fonction généralisant la fonction exponentielle aux matrices et aux endomorphismes par le calcul fonctionnel. Elle fait en particulier le pont entre un groupe de Lie et son algèbre de Lie. Pour n = 1, on retrouve la définition de l'exponentielle complexe. Sauf indication contraire, X, Y désignent des matrices n × n complexes (à coefficients complexes).
Hermitien
Plusieurs entités mathématiques sont qualifiées d'hermitiennes en référence au mathématicien Charles Hermite. Produit scalaire#Généralisation aux espaces vectoriels complexesProduit scalaire hermitien Soit E un espace vectoriel complexe. On dit qu'une application f définie sur E x E dans C est une forme sesquilinéaire à gauche si quels que soient les vecteurs X, Y, Z appartenant à E, et a, b des scalaires : f est semi-linéaire par rapport à la première variable et f est linéaire par rapport à la deuxième variable Une telle forme est dite hermitienne (ou à symétrie hermitienne) si de plus : ou, ce qui est équivalent : Elle est dite hermitienne définie positive si pour tout vecteur .
Racine carrée d'une matrice
En mathématiques, la notion de racine carrée d'une matrice particularise aux anneaux de matrices carrées la notion générale de racine carrée dans un anneau. Soient un entier naturel n non nul et M une matrice carrée d'ordre n à coefficients dans un anneau A. Un élément R de M(A) est une racine carrée de M si R = M. Une matrice donnée peut n'admettre aucune racine carrée, comme un nombre fini voire infini de racine carrées. Dans M(R) : est une racine carrée de les (pour tout réel x) sont des racines carrées de n'a pas de racine carrée R, car cela imposerait (mais elle en a dans M(C)).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.