Concepts associés (43)
Domain (mathematical analysis)
In mathematical analysis, a domain or region is a non-empty connected open set in a topological space, in particular any non-empty connected open subset of the real coordinate space Rn or the complex coordinate space Cn. A connected open subset of coordinate space is frequently used for the domain of a function, but in general, functions may be defined on sets that are not topological spaces.
Conjugué
vignette|Représentation géométrique (diagramme d'Argand) de z et de son conjugué z̅ dans le plan complexe. Le conjugué est obtenu par symétrie par l'axe des réels. En mathématiques, le conjugué d'un nombre complexe z est le nombre complexe formé de la même partie réelle que z mais de partie imaginaire opposée. Le conjugué d'un nombre complexe , où a et b sont nombres réels, est noté ou . Dans le plan, le point d'affixe est le symétrique du point d'affixe par rapport à l'axe des abscisses. Le module du conjugué reste inchangé.
Dérivabilité
Une fonction réelle d'une variable réelle est dérivable en un point a quand elle admet une dérivée finie en a, c'est-à-dire, intuitivement, quand elle peut être approchée de manière assez fine par une fonction affine au voisinage de a. Elle est dérivable sur un intervalle réel ouvert non vide si elle est dérivable en chaque point de cet intervalle. Elle est dérivable sur un intervalle réel fermé et borné (c'est-à-dire sur un segment réel) non réduit à un point si elle est dérivable sur l'intérieur de cet intervalle et dérivable à droite en sa borne gauche, et dérivable à gauche en sa borne droite.
Argument d'un nombre complexe
Un argument d’un nombre complexe z non nul est une mesure (en radians, donc modulo 2π) de l'angle entre la demi-droite des nombres réels positifs (l'axe des abscisses) et celle issue de l'origine et passant par le point représenté par z (voir la figure ci-contre). Étant donné un nombre complexe z non nul, un argument de z est une mesure (en radians, donc modulo 2π) de l’angle : où M est l'image de z dans le plan complexe, c'est-à-dire le point d'affixe z.
Théorème de Jordan
En mathématiques, le théorème de Jordan est un théorème de topologie plane. Il est célèbre par le caractère apparemment intuitif de son énoncé et la difficulté de sa démonstration. précise M. Dostal à son sujet. Si, à l'aide d'un crayon, on dessine une ligne continue (on ne lève pas le crayon) qui ne se croise pas et qui termine là où elle commence, la zone de la feuille non dessinée se décompose en deux parties, l'intérieur de la figure, qui est borné, et l'extérieur, qui ne le serait pas si la feuille ne l'était pas.
Fréchet derivative
In mathematics, the Fréchet derivative is a derivative defined on normed spaces. Named after Maurice Fréchet, it is commonly used to generalize the derivative of a real-valued function of a single real variable to the case of a vector-valued function of multiple real variables, and to define the functional derivative used widely in the calculus of variations. Generally, it extends the idea of the derivative from real-valued functions of one real variable to functions on normed spaces.
Théorème intégral de Cauchy
En analyse complexe, le théorème intégral de Cauchy, ou de Cauchy-Goursat, est un important résultat concernant les intégrales curvilignes de fonctions holomorphes dans le plan complexe. D'après ce théorème, si deux chemins différents relient les deux mêmes points et si une fonction est holomorphe « entre » les deux chemins, alors les deux intégrales de cette fonction suivant ces chemins sont égales. Le théorème est habituellement formulé pour les lacets (c'est-à-dire les chemins dont le point de départ est confondu avec le point d'arrivée) de la manière suivante.
Méthodes de calcul d'intégrales de contour
En analyse complexe, lintégration de contour est une technique de calcul d'intégrale le long de chemins sur le plan complexe L'intégration de contour est fortement liée au calculs de résidus, une méthode de calcul utilisée pour évaluer des intégrales curvilignes sur l'axe des réelles, que les outils de la théorie de l'intégration ne permettent pas de calculer par une simple analyse réelle Les méthodes d'intégration de contour incluent : l'intégration directe d'une fonction à valeurs complexes le long d'une c
Formule intégrale de Cauchy
vignette|Illustration de la formule intégrale de Cauchy en analyse complexe La formule intégrale de Cauchy, due au mathématicien Augustin Louis Cauchy, est un point essentiel de l'analyse complexe. Elle exprime le fait que la valeur en un point d'une fonction holomorphe est complètement déterminée par les valeurs qu'elle prend sur un chemin fermé contenant (c'est-à-dire entourant) ce point. Elle peut aussi être utilisée pour exprimer sous forme d'intégrales toutes les dérivées d'une fonction holomorphe.
Couronne (géométrie)
En géométrie, une couronne ou plus précisément une couronne circulaire est une région du plan comprise entre deux cercles concentriques de rayons différents. Elle a deux rayons qui sont ceux de chacun des deux cercles. Une couronne sphérique ou couronne solide est une généralisation à trois dimensions de la couronne circulaire. C'est la région entre deux sphères concentriques de rayons différents. Elle a aussi deux rayons. On appelle épaisseur de la couronne la différence des deux rayons, qui vaut (notations de la première image).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.