Triangle rectangleEn géométrie euclidienne, un triangle rectangle est un triangle dont l'un des angles est droit. Les deux autres angles sont alors complémentaires, de mesure strictement inférieure. On nomme alors hypoténuse le côté opposé à l'angle droit. Les deux autres côtés, adjacents à l’angle droit, sont appelés cathètes. L’hypoténuse est alors le plus grand côté du triangle, et sa longueur est reliée à celles des deux autres côtés par le théorème de Pythagore. Cette relation est même caractéristique des triangles rectangles.
Loi de ParetoEn théorie des probabilités, la loi de Pareto, d'après Vilfredo Pareto, est un type particulier de loi de puissance qui a des applications en sciences physiques et sociales. Elle permet notamment de donner une base théorique au « principe des 80-20 », aussi appelé principe de Pareto. Soit la variable aléatoire X qui suit une loi de Pareto de paramètres (x,k), avec k un réel positif, alors la loi est caractérisée par : Les lois de Pareto sont des lois continues.
Inégalité arithmético-géométriquethumb|right|Preuve sans mots de l'inégalité arithmético-géométrique en deux dimensions : PR est un diamètre d'un cercle de centre O ; son rayon AO a donc pour longueur la moyenne arithmétique de a et b. Par le théorème de la moyenne géométrique, on trouve aussi que la hauteur GQ a pour longueur la moyenne géométrique de a et b. On a donc bien pour tous a:b, AO ≥ GQ. En mathématiques, l'inégalité arithmético-géométrique (IAG) établit un lien entre la moyenne arithmétique et la moyenne géométrique.
Coefficient de variationvignette|CV (coefficient de variation) = l'écart-type sur la moyenne En théorie des probabilités et statistiques, le coefficient de variation également nommé écart type relatif, est une mesure de dispersion relative. Le RSD (relative standard deviation en anglais) est défini comme la valeur absolue du coefficient de variation et est souvent exprimé en pourcentage. Le coefficient de variation est défini comme le rapport entre l'écart-type et la moyenne : L'écart-type seul ne permet le plus souvent pas de juger de la dispersion des valeurs autour de la moyenne.
Précision et rappelvignette|350px|Précision et rappel (« recall »). La précision compte la proportion d'items pertinents parmi les items sélectionnés alors que le rappel compte la proportion d'items pertinents sélectionnés parmi tous les items pertinents sélectionnables. Dans les domaines de la reconnaissance de formes, de la recherche d'information et de la classification automatique, la précision (ou valeur prédictive positive) est la proportion des items pertinents parmi l'ensemble des items proposés ; le rappel (ou sensibilité) est la proportion des items pertinents proposés parmi l'ensemble des items pertinents.
Moyenne quadratiqueLa (rms en anglais, pour root mean square) d'un ensemble de nombres est la racine carrée de la moyenne arithmétique des carrés de ces nombres. Elle correspond au cas de la moyenne d'ordre p. Par exemple, l'écart type dans une population est la moyenne quadratique des distances à la moyenne. La moyenne quadratique est supérieure ou égale à la moyenne arithmétique. Dans une série de valeurs, une valeur particulièrement élevée par rapport aux autres aura plus d'impact sur la moyenne quadratique de la série que sur la moyenne arithmétique.
Sensibilité et spécificitéEn statistique, la sensibilité (ou sélectivité) d'un test mesure sa capacité à donner un résultat positif lorsqu'une hypothèse est vérifiée. Elle s'oppose à la spécificité, qui mesure la capacité d'un test à donner un résultat négatif lorsque l'hypothèse n'est pas vérifiée. Ces notions sont d'une importance majeure en épidémiologie et en , notamment au travers des courbes ROC. Cet article présente ces notions dans le cadre de l'application en épidémiologie.
Moyenne quasi-arithmétiqueEn mathématiques et en statistiques, les moyennes quasi-arithmétiques, ou moyennes de Kolmogorov ou encore moyennes selon une fonction f constituent une généralisation de la moyenne (de Hölder) d'ordre p (qui est elle-même une généralisation des moyennes usuelles : arithmétique, géométrique). Elles sont paramétrées par une fonction f. Soit une fonction d'un intervalle dans les nombres réels, continue et injective. La moyenne selon la fonction f des nombres est définie par , que l'on peut aussi écrire Il est nécessaire que soit injective pour que son inverse soit définie.