Anneau artinienEn algèbre commutative, un anneau artinien est un anneau vérifiant la condition de chaîne descendante pour ses idéaux. Les anneaux artiniens doivent leur nom au mathématicien autrichien Emil Artin. On dit qu'un anneau commutatif (unitaire) A est un anneau artinien si c'est un A-module artinien, autrement dit, si toute suite décroissante d'idéaux de A est stationnaire. Cela équivaut à dire que tout ensemble non vide d'idéaux de A admet un élément minimal (pour la relation d'inclusion).
Torsion (algèbre)En algèbre, dans un groupe, un élément est dit de torsion s'il est d'ordre fini, c'est-à-dire si l'une de ses puissances non nulle est l'élément neutre. La torsion d'un groupe est l'ensemble de ses éléments de torsion. Un groupe est dit sans torsion si sa torsion ne contient que le neutre, c'est-à-dire si tout élément différent du neutre est d'ordre infini. Si le groupe est abélien, sa torsion est un sous-groupe. Par exemple, le sous-groupe de torsion du groupe abélien est .
Module libreEn algèbre, un module libre est un module M qui possède une base B, c'est-à-dire un sous-ensemble de M tel que tout élément de M s'écrive de façon unique comme combinaison linéaire (finie) d'éléments de B. Une base de M est une partie B de M qui est à la fois : génératrice pour M, c'est-à-dire que tout élément de M est combinaison linéaire d'éléments de B ; libre, c'est-à-dire que pour toutes familles finies (ei)1≤i≤n d'éléments de B deux à deux distincts et (ai)1≤i≤n d'éléments de l'anneau sous-jacent telles que a1e1 + .
Quadratic fieldIn algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers. Every such quadratic field is some where is a (uniquely defined) square-free integer different from and . If , the corresponding quadratic field is called a real quadratic field, and, if , it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the real numbers.
Nombre p-adiquevignette|Les entiers 3-adiques, avec des représentations obtenues par dualité de Pontriaguine. En mathématiques, et plus particulièrement en théorie des nombres, pour un nombre premier fixé, les nombres p-adiques forment une extension particulière du corps des nombres rationnels, découverte par Kurt Hensel en 1897. Le corps commutatif des nombres -adiques peut être construit par complétion de , d'une façon analogue à la construction des nombres réels par les suites de Cauchy, mais pour une valeur absolue moins familière, nommée valeur absolue -adique.
Ideal numberIn number theory an ideal number is an algebraic integer which represents an ideal in the ring of integers of a number field; the idea was developed by Ernst Kummer, and led to Richard Dedekind's definition of ideals for rings. An ideal in the ring of integers of an algebraic number field is principal if it consists of multiples of a single element of the ring, and nonprincipal otherwise. By the principal ideal theorem any nonprincipal ideal becomes principal when extended to an ideal of the Hilbert class field.
Anneau noethérienEn mathématique, un anneau noethérien est un cas particulier d'anneau, c'est-à-dire d'un ensemble muni d'une addition et d'une multiplication compatible avec l'addition, au sens de la distributivité. De nombreuses questions mathématiques s'expriment dans un contexte d'anneau, les endomorphismes d'un espace vectoriel ou d'un module sur un anneau, les entiers algébriques de la théorie algébrique des nombres, ou encore les surfaces de la géométrie algébrique.
Hereditary ringIn mathematics, especially in the area of abstract algebra known as module theory, a ring R is called hereditary if all submodules of projective modules over R are again projective. If this is required only for finitely generated submodules, it is called semihereditary. For a noncommutative ring R, the terms left hereditary and left semihereditary and their right hand versions are used to distinguish the property on a single side of the ring.
Krull ringIn commutative algebra, a Krull ring, or Krull domain, is a commutative ring with a well behaved theory of prime factorization. They were introduced by Wolfgang Krull in 1931. They are a higher-dimensional generalization of Dedekind domains, which are exactly the Krull domains of dimension at most 1. In this article, a ring is commutative and has unity. Let be an integral domain and let be the set of all prime ideals of of height one, that is, the set of all prime ideals properly containing no nonzero prime ideal.
Anneau de BézoutEn algèbre commutative, un anneau quasi-bézoutien est un anneau où la propriété de Bézout est vérifiée ; plus formellement, c'est un anneau dans lequel tout idéal de type fini est principal. Un anneau de Bézout, ou anneau bézoutien, est un anneau quasi-bézoutien intègre. Un idéal de type fini est un idéal engendré par un nombre fini d'éléments. Un idéal engendré par un élément a est dit idéal principal et se note aA. Un idéal engendré par deux éléments a et b se note aA + bA, il est constitué des éléments de A pouvant s'écrire sous la forme au + bv avec u et v éléments de A.