Split-biquaternionIn mathematics, a split-biquaternion is a hypercomplex number of the form where w, x, y, and z are split-complex numbers and i, j, and k multiply as in the quaternion group. Since each coefficient w, x, y, z spans two real dimensions, the split-biquaternion is an element of an eight-dimensional vector space. Considering that it carries a multiplication, this vector space is an algebra over the real field, or an algebra over a ring where the split-complex numbers form the ring.
Vecteur isotropeEn mathématiques, un vecteur isotrope pour une forme bilinéaire f est un vecteur x tel que f(x, x) = 0. Soient E un espace vectoriel et f une forme bilinéaire symétrique sur E. On dit qu'un vecteur x de E est isotrope (pour f, ou pour la forme quadratique associée) si f(x, x) = 0. L'ensemble des vecteurs isotropes est appelé le cône isotrope. Il contient le noyau de f. Au cône isotrope, on associe une quadrique projective. La forme bilinéaire est dite définie — et la forme quadratique est dite anisotrope — si 0 est son seul vecteur isotrope.
Algèbre généraleL'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément.
Algèbre de compositionEn mathématiques, les algèbres de composition sur un corps commutatif sont des structures algébriques qui généralisent simultanément le corps des nombres complexes, le corps non commutatif des quaternions de Hamilton et l'algèbre des octonions de Cayley. Dans cet article, on note K un corps commutatif (de caractéristique quelconque), et les algèbres ne sont pas supposées être associatives ni – a priori du moins – de dimension finie.
BiquaternionEn mathématiques, un biquaternion (ou quaternion complexe) est un élément de l'algèbre des quaternions sur les nombres complexes. Le concept d'un biquaternion fut mentionné la première fois par William Rowan Hamilton au . William Kingdon Clifford utilisa le même nom à propos d'une algèbre différente. biquaternion de Clifford Il y a aussi une autre notion de biquaternions, distincte : une algèbre de biquaternions sur un corps commutatif K est une algèbre qui est isomorphe au produit tensoriel de deux algèbres de quaternions sur K (sa dimension est 16 sur K, et non pas 8 sur R).
Sous-anneauEn mathématiques, un sous-anneau d'un anneau (unitaire) A est une partie de A stable pour les opérations de A et ayant une structure d'anneau avec le même neutre multiplicatif que A. Une partie B d'un anneau (A,+,*). est appelée un sous-anneau de A lorsque : B est un sous-groupe de A pour l'addition ; B est stable pour la multiplication ; Le neutre multiplicatif de A appartient à B. Pour les restrictions des opérations de A, B est alors lui-même un anneau, avec le même neutre multiplicatif.
NilpotentEn mathématiques, un élément x d'un anneau unitaire (ou même d'un pseudo-anneau) est dit nilpotent s'il existe un entier naturel n non nul tel que x = 0. Cette définition peut être appliquée en particulier aux matrices carrées. La matrice est nilpotente parce que A = 0. On parle alors de matrice nilpotente et d'endomorphisme nilpotent. Dans l'anneau Z/9Z, la classe de 3 est nilpotente parce que 3 est congru à 0 modulo 9. L'anneau des coquaternions contient un cône de nilpotents.
Idempotent (ring theory)In ring theory, a branch of mathematics, an idempotent element or simply idempotent of a ring is an element a such that a2 = a. That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that a = a2 = a3 = a4 = ... = an for any positive integer n. For example, an idempotent element of a matrix ring is precisely an idempotent matrix. For general rings, elements idempotent under multiplication are involved in decompositions of modules, and connected to homological properties of the ring.
Nombre complexe déployéEn mathématiques, les nombres complexes déployés ou fendus forment un anneau commutatif non-intègre, extension des nombres réels définis de manière analogue aux nombres complexes (usuels). La différence-clef entre les deux est que la multiplication des nombres complexes (usuels) respecte la norme euclidienne standard (carrée) : sur alors que la multiplication des nombres complexes déployés, quant à elle, respecte la norme de Minkowski ou norme lorentzienne (carrée) Les nombres complexes déployés ont beaucoup d'autres noms, voir la section des synonymes ci-dessous.
Nombre hypercomplexeEn mathématiques, le terme nombre hypercomplexe est utilisé pour désigner les éléments des algèbres qui sont étendues ou qui vont plus loin que l'arithmétique des nombres complexes. Les nombres hypercomplexes ont eu un grand nombre de partisans incluant Hermann Hankel, Georg Frobenius, Eduard Study et Élie Cartan. L'étude des systèmes hypercomplexes particuliers conduit à leur représentation avec l'algèbre linéaire. Les nombres hypercomplexes sont utilisés en physique quantique pour calculer la probabilité d'un événement en tenant compte du spin de la particule.