Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Atan2thumb|Courbe de en fonction de . En trigonométrie, la fonction atan2 à deux arguments est une variante de la fonction arc tangente. Pour tous arguments réels x et y non nuls, est l'angle en radians entre la partie positive de l'axe des abscisses d'un plan, et le point de ce plan de coordonnées (x, y). Cet angle est positif pour les angles dans le sens anti-horaire dit sens trigonométrique (demi-plan supérieur, y > 0) et négatif dans l'autre (demi-plan inférieur, y < 0).
Logarithme complexeEn mathématiques, le logarithme complexe est une fonction généralisant la fonction logarithme naturel (définie sur ]0,+∞[) au domaine C* des nombres complexes non nuls. Plusieurs définitions sont possibles. Aucune ne permet de conserver, à la fois, l'univocité, la continuité et les propriétés algébriques de la fonction logarithme. Histoire des nombres complexes La question de savoir s'il est possible de prolonger le logarithme naturel (c'est-à-dire de le définir sur un ensemble plus grand que ]0,+∞[) s'est posée dès la seconde moitié du avec les développements en série des fonctions.
Plan complexeEn mathématiques, le plan complexe (aussi appelé plan d'Argand, plan d'Argand-Cauchy ou plan d'Argand-Gauss) désigne un plan, muni d'un repère orthonormé, dont chaque point est la représentation graphique d'un nombre complexe unique. Le nombre complexe associé à un point est appelé l'affixe de ce point. Une affixe est constituée d'une partie réelle et d'une partie imaginaire correspondant respectivement à l'abscisse et l'ordonnée du point. On associe en général le plan complexe à un repère orthonormé direct.
Valeur principaleEn mathématiques, plus particulièrement en analyse complexe, les valeurs principales d'une fonction à plusieurs valeurs sont les valeurs le long d'une branche choisie de cette fonction, de sorte qu'elle est à valeur unique. Le cas le plus simple se présente en prenant la racine carrée d'un nombre réel positif. Par exemple, 4 a deux racines carrées : 2 et −2 ; parmi ceux-ci, la racine positive, 2, est considérée comme la racine principale et est notée . On considère la fonction logarithme complexe ln(z) .
Fonction multivaluéeframe|right|Ce diagramme représente une multifonction : à chaque élément de X on fait correspondre une partie de Y ; ainsi à l'élément 3 de X correspond la partie de Y formée des deux points b et c. En mathématiques, une fonction multivaluée (aussi appelée correspondance, fonction multiforme, fonction multivoque ou simplement multifonction) est une relation binaire quelconque, improprement appelée fonction car non fonctionnelle : à chaque élément d'un ensemble elle associe, non pas au plus un élément mais possiblement zéro, un ou plusieurs éléments d'un second ensemble.
Racine cubiquevignette|Courbe représentative de la fonction racine cubique sur R. En mathématiques, la racine cubique d'un nombre réel est l'unique nombre réel dont le cube (c'est-à-dire la puissance ) vaut ; en d'autres termes, . La racine cubique de est notée . On peut également parler des racines cubiques d'un nombre complexe. De façon générale, on appelle racine cubique d'un nombre (réel ou complexe) tout nombre solution de l'équation : Si est réel, cette équation a dans R une unique solution, qu'on appelle la racine cubique du réel : .
Unité imaginaireEn mathématiques, l’unité imaginaire est un nombre complexe, noté (parfois en physique afin de ne pas le confondre avec la notation de l'intensité électrique), dont le carré vaut –1. Ses multiples par des nombres réels constituent les nombres imaginaires purs. L'appellation d'« imaginaire » est due à René Descartes et celle d'« unité imaginaire » à Carl Friedrich Gauss. Sans avoir disparu, cette appellation n'est pas d'un usage très généralisé chez les mathématiciens, qui se contentent souvent de parler du nombre i.
Fonction circulaire réciproqueLes fonctions circulaires réciproques, ou fonctions trigonométriques inverses, sont les fonctions réciproques des fonctions circulaires, pour des intervalles de définition précis. Les fonctions réciproques des fonctions sinus, cosinus, tangente, cotangente, sécante et cosécante sont appelées arc sinus, arc cosinus, arc tangente, arc cotangente, arc sécante et arc cosécante. Les fonctions circulaires réciproques servent à obtenir un angle à partir de l'une quelconque de ses lignes trigonométriques, mais aussi à expliciter les primitives de certaines fonctions.
Coordonnées polairesvignette|upright=1.4|En coordonnées polaires, la position du point M est définie par la distance r et l'angle θ. vignette|upright=1.4|Un cercle découpé en angles mesurés en degrés. Les coordonnées polaires sont, en mathématiques, un système de coordonnées curvilignes à deux dimensions, dans lequel chaque point du plan est entièrement déterminé par un angle et une distance. Ce système est particulièrement utile dans les situations où la relation entre deux points est plus facile à exprimer en termes d’angle et de distance, comme dans le cas du pendule.