Concepts associés (16)
Théorie analytique des nombres
droite|vignette|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : les couleurs proches du noir indiquent des valeurs proches de zéro, alors que la teinte code l'argument de la valeur. En mathématiques, la théorie analytique des nombres est une branche de la théorie des nombres qui utilise des méthodes d'analyse mathématique pour résoudre des problèmes concernant les nombres entiers.
Inégalité de Bienaymé-Tchebychev
En théorie des probabilités, l'inégalité de Bienaymé-Tchebychev, est une inégalité de concentration permettant de montrer qu'une variable aléatoire prendra avec une faible probabilité une valeur relativement lointaine de son espérance. Ce résultat s'applique dans des cas très divers, nécessitant la connaissance de peu de propriétés (seules l'espérance et la variance doivent être connues), et permet de démontrer la loi faible des grands nombres.
Loi des grands nombres
vignette|Visualisation de la loi des grands nombres En mathématiques, la loi des grands nombres permet d’interpréter la probabilité comme une fréquence de réalisation, justifiant ainsi le principe des sondages, et présente l’espérance comme une moyenne. Plus formellement, elle signifie que la moyenne empirique, calculée sur les valeurs d’un échantillon, converge vers l’espérance lorsque la taille de l’échantillon tend vers l’infini. Plusieurs théorèmes expriment cette loi, pour différents types de convergence en théorie des probabilités.
Théorème d'Euclide sur les nombres premiers
En arithmétique, le théorème d'Euclide sur les nombres premiers affirme qu'il existe une infinité de nombres premiers. Ce résultat est énoncé et démontré dans les Éléments d'Euclide, c'est la proposition 20 du livre IX. Il y prend cependant une forme différente : « les nombres premiers sont plus nombreux que n'importe quelle multitude de nombres premiers proposée », plus compatible avec la conception de l'infini de l'auteur. D'autres preuves ont ensuite été proposées, notamment par Euler.
Moment (probabilités)
En théorie des probabilités et en statistique, les moments d’une variable aléatoire réelle sont des indicateurs de la dispersion de cette variable. Le premier moment ordinaire, appelé moment d'ordre 1 est l'espérance (i.e la moyenne) de cette variable. Le deuxième moment centré d'ordre 2 est la variance. Ainsi, l'écart type est la racine carrée du moment centré d’ordre 2. Le moment d'ordre 3 est l'asymétrie. Le moment d'ordre 4 est le kurtosis. Le concept de moment est proche du concept de moment en physique.
Inégalité de Markov
En théorie des probabilités, l'inégalité de Markov donne une majoration de la probabilité qu'une variable aléatoire réelle à valeurs positives soit supérieure ou égale à une constante positive. Cette inégalité a été nommée ainsi en l'honneur d'Andreï Markov. Il existe une version plus générale de ce théorème. Soit une variable aléatoire de où est l'ensemble des réalisations, est la tribu des événements et la mesure de probabilité. Alors, l'inégalité de Markov peut être énoncée de la façon suivante :La démonstration tient entièrement au fait que pour tout strictement positif, .
Saint-Pétersbourg
Saint-Pétersbourg (prononcé en français : ; en russe : Санкт-Петербу́рг, Sankt-Peterbourg, ) est la deuxième ville de Russie par sa population, avec en 2017, après la capitale Moscou. Plus grande métropole septentrionale du monde, la ville est située dans le Nord-Ouest du pays sur le delta de la Neva, au fond du golfe de Finlande, un espace maritime de la mer Baltique. Saint-Pétersbourg a le statut de ville fédérale de Russie. La ville est enclavée dans l'oblast de Léningrad, mais en est administrativement indépendante.
Andreï Markov (mathématicien)
Andreï Andreïevitch Markov (en Андрей Андреевич Марков) (1856-1922) est un mathématicien russe. Il est considéré comme le fondateur de la théorie des processus stochastiques. La mère d'Andreï Markov, Nadejda Petrovna, est la fille d'un ouvrier d'État. Son père, Andreï Grigorievitch Markov, membre de la petite noblesse, sert dans le département des forêts, puis devient gestionnaire de domaine privé. Dans ses premières années, Markov est en mauvaise santé et jusqu'à l'âge de dix ans, il ne peut marcher qu'à l'aide de béquilles.
Théorème central limite
thumb|upright=2|La loi normale, souvent appelée la « courbe en cloche ». Le théorème central limite (aussi appelé théorème limite central, théorème de la limite centrale ou théorème de la limite centrée) établit la convergence en loi de la somme d'une suite de variables aléatoires vers la loi normale. Intuitivement, ce résultat affirme qu'une somme de variables aléatoires indépendantes et identiquement distribuées tend (le plus souvent) vers une variable aléatoire gaussienne.
Théorème des nombres premiers
vignette|Une illustration du théorème des nombres premiers : en rouge, le nombre de nombres premiers inférieurs ou égaux à x ; en vert, une approximation utilisant ; en bleu, une approximation utilisant l'intégrale logarithmique . En mathématiques, et plus précisément en théorie analytique des nombres, le théorème des nombres premiers, démontré indépendamment par Hadamard et La Vallée Poussin en 1896, est un résultat concernant la distribution asymptotique des nombres premiers.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.