BijectionEn mathématiques, une bijection ou application bijective (parfois appelée correspondances biunivoques) est une application qui est à la fois injective et surjective, autrement dit pour laquelle tout élément de son ensemble d'arrivée possède un et un seul antécédent. Une propriété des bijections est que s'il existe une bijection f d'un ensemble E dans un ensemble F alors il existe une bijection réciproque de F dans E qui à chaque élément de F associe son antécédent par f. Les deux ensembles sont dits en bijection, ou équipotents.
Restriction (mathématiques)thumb|La fonction x2 n'admet pas de réciproque sur la droite réelle. Il faut restreindre sur les réels positifs pour pouvoir définir la racine carrée . En mathématiques, la restriction d'une fonction f est une fonction, souvent notée f ou , pour laquelle on ne considère que les valeurs prises par f sur un domaine A inclus dans le domaine de définition de f. Soit f : E → F une fonction sur un ensemble E vers un ensemble F.
MonoïdeEn mathématiques, un monoïde est une structure algébrique utilisée en algèbre générale, définie comme un ensemble muni d'une loi de composition interne associative et d'un élément neutre. Autrement dit, c'est un magma associatif et unifère, c'est-à-dire un demi-groupe unifère. Il arrive parfois qu'une structure composée d'un ensemble et d'une unique opération soit relativement pauvre en éléments inversibles, par exemple un anneau où l'on considère uniquement la multiplication. Une telle structure est appelée monoïde.
Espace métriqueEn mathématiques et plus particulièrement en topologie, un espace métrique est un ensemble au sein duquel une notion de distance entre les éléments de l'ensemble est définie. Les éléments seront, en général, appelés des points. Tout espace métrique est canoniquement muni d'une topologie. Les espaces métrisables sont les espaces topologiques obtenus de cette manière. L'exemple correspondant le plus à notre expérience intuitive de l'espace est l'espace euclidien à trois dimensions.
Espace topologiqueLa topologie générale est une branche des mathématiques qui fournit un vocabulaire et un cadre général pour traiter des notions de limite, de continuité, et de voisinage. Les espaces topologiques forment le socle conceptuel permettant de définir ces notions. Elles sont suffisamment générales pour s'appliquer à un grand nombre de situations différentes : ensembles finis, ensembles discrets, espaces de la géométrie euclidienne, espaces numériques à n dimensions, espaces fonctionnels plus complexes, mais aussi en géométrie algébrique.
HomomorphismIn algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός () meaning "same" and μορφή () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).
Bijection réciproqueEn mathématiques, la bijection réciproque (ou fonction réciproque ou réciproque) d'une bijection est l'application qui associe à chaque élément de l'ensemble d'arrivée son unique antécédent par . Elle se note . On considère l'application de vers définie par . Pour chaque réel y, il y a un et un seul réel x tel que , ainsi pour = 8, le seul convenable est 2, en revanche, pour = –27 c'est –3. En termes mathématiques, on dit que est l'unique antécédent de et que est une bijection.
Élément neutreEn mathématiques, plus précisément en algèbre, un élément neutre (ou élément identité) d'un ensemble pour une loi de composition interne est un élément de cet ensemble qui laisse tous les autres éléments inchangés lorsqu'il est composé avec eux par cette loi. Un magma possédant un élément neutre est dit unifère. Soit un magma. Un élément de est dit : neutre à gauche si ; neutre à droite si ; neutre s'il est neutre à droite et à gauche.