Coordonnées cylindriquesUn système de est un système de coordonnées curvilignes orthogonales qui généralise à l'espace celui des coordonnées polaires du plan en y ajoutant une troisième coordonnée, généralement notée z, qui mesure la hauteur d'un point par rapport au plan repéré par les coordonnées polaires (de la même manière que l'on étend le système de coordonnées cartésiennes de deux à trois dimensions). Les coordonnées cylindriques servent à indiquer la position d'un point dans l'espace. Les coordonnées cylindriques ne servent pas pour les vecteurs.
Trois dimensionsTrois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
BivecteurEn algèbre, le terme de bivecteur désigne un tenseur antisymétrique d'ordre 2, c'est-à-dire une quantité X pouvant s'écrire où les quantités ω sont des formes linéaires et le signe désigne le produit extérieur. Un bivecteur peut être vu comme une application linéaire agissant sur les vecteurs et les transformant en formes linéaires. Les coefficients X_ab peuvent être vus comme formant une matrice antisymétrique. Les bivecteurs sont abondamment utilisés en relativité générale, où plusieurs tenseurs peuvent être reliés à des bivecteurs.
Produit vectorielEn mathématiques, et plus précisément en géométrie, le produit vectoriel est une opération vectorielle effectuée dans les espaces euclidiens orientés de dimension 3. Le formalisme utilisé actuellement est apparu en 1881 dans un manuel d'analyse vectorielle écrit par Josiah Willard Gibbs pour ses étudiants en physique. Les travaux de Hermann Günther Grassmann et William Rowan Hamilton sont à l'origine du produit vectoriel défini par Gibbs.
Vecteurdroite|cadre|Deux vecteurs et et leur vecteur somme. En mathématiques, un vecteur est un objet généralisant plusieurs notions provenant de la géométrie (couples de points, translations, etc.), de l'algèbre (« solution » d'un système d'équations à plusieurs inconnues), ou de la physique (forces, vitesses, accélérations). Rigoureusement axiomatisée, la notion de vecteur est le fondement de la branche des mathématiques appelée algèbre linéaire.
Del in cylindrical and spherical coordinatesThis is a list of some vector calculus formulae for working with common curvilinear coordinate systems. This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): The polar angle is denoted by : it is the angle between the z-axis and the radial vector connecting the origin to the point in question. The azimuthal angle is denoted by : it is the angle between the x-axis and the projection of the radial vector onto the xy-plane.
Coordonnées sphériquesvignette|Illustration de la convention de l'article. La position du point P est définie par la distance et par les angles (colatitude) et (longitude).|alt= On appelle coordonnées sphériques divers systèmes de coordonnées orthogonales de l'espace analogues aux coordonnées polaires du plan. Un point de l'espace est repéré dans ces systèmes par la distance à une origine (le pôle) et par deux angles. Ils sont d'emploi courant pour le repérage géographique : l'altitude, la latitude et la longitude sont une variante de ces coordonnées.
Coordonnées orthogonalesEn mathématiques, les coordonnées orthogonales sont définies comme un ensemble de d coordonnées q = (q1, q2..., qd) dans lequel toutes les surfaces coordonnées se rencontrent à angle droit. Une surface coordonnée particulière de coordonnée qk est une courbe, une surface ou une hypersurface sur laquelle chaque qk est une constante. Par exemple, le système de coordonnées cartésiennes de dimension 3 (x, y, z) est un système de coordonnées orthogonales puisque ses surfaces coordonnées x = constante, y = constante et z = constante sont des plans deux à deux perpendiculaires.
Identités vectoriellesDans cet article, on note pour le produit vectoriel et · pour le produit scalaire. Les identités suivantes peuvent être utiles en analyse vectorielle. (Identité de Binet-Cauchy) Dans cette section, a, b, c et d représentent des vecteurs quelconques de . Dans cet article, les conventions suivantes sont utilisées; à noter que la position (levée ou abaissée) des indices n'a pas, ici, beaucoup d'importance étant donné que l'on travaille dans un contexte euclidien.
Nabla symbol∇ The nabla symbol The nabla is a triangular symbol resembling an inverted Greek delta: or ∇. The name comes, by reason of the symbol's shape, from the Hellenistic Greek word νάβλα for a Phoenician harp, and was suggested by the encyclopedist William Robertson Smith to Peter Guthrie Tait in correspondence. The nabla symbol is available in standard HTML as ∇ and in LaTeX as \nabla. In Unicode, it is the character at code point U+2207, or 8711 in decimal notation, in the Mathematical Operators block.