Universal setIn set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set. Many set theories do not allow for the existence of a universal set. There are several different arguments for its non-existence, based on different choices of axioms for set theory. In Zermelo–Fraenkel set theory, the axiom of regularity and axiom of pairing prevent any set from containing itself.
Grand cardinalEn mathématiques, et plus précisément en théorie des ensembles, un grand cardinal est un nombre cardinal transfini satisfaisant une propriété qui le distingue des ensembles constructibles avec l'axiomatique usuelle (ZFC) tels que א, א, etc., et le rend nécessairement plus grand que tous ceux-ci. L'existence d'un grand cardinal est donc soumise à l'acceptation de nouveaux axiomes. Un axiome de grand cardinal est un axiome affirmant qu'il existe un cardinal (ou parfois une famille de cardinaux) ayant une propriété de grand cardinal donnée.
Axiome de constructibilitéL'axiome de constructibilité est un des axiomes possibles de la théorie des ensembles affirmant que tout ensemble est constructible. Cet axiome est généralement résumé par = , où représente la classe des ensembles et est l’univers constructible, la classe des ensembles récursivement définissables via un langage approprié.
Cardinal inaccessibleEn mathématiques, et plus précisément en théorie des ensembles, un cardinal inaccessible est un cardinal ne pouvant être construit à partir de cardinaux plus petits à l'aide des axiomes de ZFC ; cette propriété fait qu'un cardinal inaccessible est un grand cardinal. Un cardinal infini א est : soit א0 si α = 0 ; soit limite (au sens faible) si α est un ordinal limite ; soit successeur de א si α = β + 1.
Paradoxe de CantorLe paradoxe de Cantor, ou paradoxe du plus grand cardinal, est un paradoxe de la théorie des ensembles dont l'argument a été découvert par Georg Cantor dans les années 1890. On le trouve dans sa lettre adressée à David Hilbert, datée de 1897. Il est appelé ainsi par Bertrand Russell dans ses Principles of Mathematics de 1903. Le paradoxe énonce que l'existence d'un plus grand cardinal conduit à une contradiction.
Ur-elementEn théorie des ensembles, un ur-element (ou urelement) est quelque chose qui n'est pas un ensemble mais qui peut être élément d'un ensemble. Ainsi, si u est un ur-element, et X un ensemble, on peut avoir ou non : u ∈ X, mais X ∈ u est impossible. Ils partagent ainsi avec le seul ensemble vide le fait de ne posséder aucun élément, mais pour des raisons tout à fait différentes : rien ne peut appartenir à un ur-element parce que cela n'a pas de sens, alors que rien n'appartient à l'ensemble vide par définition.
Schéma d'axiomesEn logique mathématique, la notion de schéma d’axiomes généralise celle d'axiome. Un schéma d’axiomes est une formule exprimée dans le métalangage d'un système axiomatique, dans lequel une ou plusieurs métavariables apparaissent. Ces variables, qui sont des constructions métalinguistiques, représentent n'importe quel terme ou sous-formule du système logique, qui peut être (ou ne pas être) tenu de satisfaire certaines conditions. Souvent, de telles conditions exigent que certaines des variables soient libres, ou que certaines variables n'apparaissent pas dans la sous-formule ou le terme.
Axiome de déterminationL'axiome de détermination est un axiome alternatif de la théorie des ensembles affirmant que certains jeux (au sens de la théorie des jeux) infinis sont déterminés. Cet axiome n'est pas compatible avec l'axiome du choix mais implique l'axiome du choix dénombrable pour les familles d'ensembles de réels et implique également une forme faible de l'hypothèse du continu.
MetamathematicsMetamathematics is the study of mathematics itself using mathematical methods. This study produces metatheories, which are mathematical theories about other mathematical theories. Emphasis on metamathematics (and perhaps the creation of the term itself) owes itself to David Hilbert's attempt to secure the foundations of mathematics in the early part of the 20th century. Metamathematics provides "a rigorous mathematical technique for investigating a great variety of foundation problems for mathematics and logic" (Kleene 1952, p.
Cardinal mesurableEn mathématiques, un cardinal mesurable est un cardinal sur lequel existe une mesure définie pour tout sous-ensemble. Cette propriété fait qu'un tel cardinal est un grand cardinal. Un cardinal mesurable est un cardinal non dénombrable κ tel qu'il existe une mesure μ non triviale, κ-additive, à valeurs dans , définie sur tous les sous-ensembles de κ ; μ est donc une application de l'ensemble des parties de κ vers telle que : Pour toute famille (avec α