Couvre la sélection des modèles, les diagnostics et les prévisions dans lanalyse des séries chronologiques, en mettant laccent sur les défis de déterminer lordre du modèle basé sur les fonctions dautocorrélation et dautocorrélation partielle.
Couvre la corrélation et les corrélations croisées dans l'analyse des données sur la pollution atmosphérique, y compris les séries chronologiques, les autocorrelations, l'analyse de Fourier et le spectre de puissance.
Explore les modèles de choix binaires comme probit et logit, ainsi que l'analyse de séries temporelles univariées avec les modèles ARIMA pour la prévision des variables économiques.
Explore les applications de la théorie des valeurs extrêmes aux séries chronologiques, en discutant de l'extrémogramme, des maxima mobiles et des séquences de seuil d'événements rares.
Explore le rôle des propriétés topologiques d'ordre supérieur dans les réseaux complexes en utilisant l'analyse topologique des données pour la détection des ruptures structurelles et des anomalies de prix.